ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

自然場景下蘋果圖像FSLIC超像素分割方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(31401291),、江蘇省自然科學(xué)基金項(xiàng)目(BK20140720,、BK20140729)和中央高校基金科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(KYZ201325)


FSLIC Superpixel Segmentation Algorithm for Apple Image in Natural Scene
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    應(yīng)用Cauchy-Schwarz不等式,,推導(dǎo)出一個(gè)聚類搜索過程中剝離不必要計(jì)算的條件,早期預(yù)估后舍掉符合預(yù)設(shè)條件的候選聚類,,提出了基于自然場景的快速簡單線性迭代聚類算法(FSLIC算法),。對包含極端惡劣條件下的500幅蘋果圖像進(jìn)行了邊界召回率檢驗(yàn)和運(yùn)行速度測試;統(tǒng)計(jì)了極端惡劣條件下的30幅蘋果圖像的全局錯(cuò)誤率GCE,、假陽性率FPR和假陰性率FNR,。試驗(yàn)表明,提出的FSLIC算法減小了后續(xù)迭代過程中的冗余誤差,,邊界召回率較GB超像素分割算法平均提高了21.7%,,速度是GB超像素分割算法的1.83倍;整個(gè)圖像分割過程中基于超像素的分割算法(GB,、FSLIC)的GCE值較常規(guī)分割算法(BP,、WT、SVM)平均減小了13%,,較常規(guī)算法的GCE值減小了19%,。

    Abstract:

    Real time efficiency is one of the bottleneck problems in the field of image processing, especially in the natural scene of the agricultural robot vision system. Nowadays superpixel segmentation algorithm was proposed as the high robustness to deal with the random uncertainty in natural scene. Simple linear iterative clustering(SLIC) has drawn much attention due to its outstanding performance in terms of accuracy, speed, antishadow and antihighlight. In this paper, by applying the Cauchy-Schwarz inequality, we derived a condition to leave unnecessary operations from the cluster inspection procedure. In the proposed algorithm, we reduced the redundant computation by using a robust inequality condition based on weighted L2 norm of pixel and cluster center representation. Then we put up with an advanced algorithm: FSLIC algorithm. We built a database with 2000 apple images in almost all natural conditions. Several kinds of extreme situations were chosen: high intensity of illumination light condition, low intensity of illumination backlight condition, uneven illumination of cloudy condition, adjacency and severe adhesion condition. The error rate curves of the insufficient segmentation, the hit rate curves of the boundary and execution time were analyzed with the 500 apple images; the GCE, FNR and FPR were detected with the 30 images in extreme condition. In the experimental results, it was confirmed that the GCE in Graphbased and FSLIC algorithm was reduced by 13% than BP algorithm, WT algorithm and SVM algorithm, the GCE in FSLIC algorithm was reduced by 19% than the traditional algrithms. The hit rate of the boundary in FSLIC algorithm was increased by 21.7% and the speed was 1.83 times than Graphbased algorithm.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

徐偉悅,田光兆,姬長英,張波,蔣思杰,張純.自然場景下蘋果圖像FSLIC超像素分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(9):1-10. Xu Weiyue, Tian Guangzhao, Ji Changying, Zhang Bo, Jiang Sijie, Zhang Chun. FSLIC Superpixel Segmentation Algorithm for Apple Image in Natural Scene[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(9):1-10.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-06-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-09-10
  • 出版日期: 2016-09-10
文章二維碼