ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于顯著性檢測(cè)的黃瓜葉部病害圖像分割算法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61502236),、江蘇省博士后科研資助計(jì)劃項(xiàng)目(1302038B)和江蘇省農(nóng)業(yè)三新工程項(xiàng)目(SXGC2014309)


Segmentation Algorithm of Cucumber Leaf Disease Image Based on Saliency Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)復(fù)雜背景下黃瓜葉部病害分割精度不高的問題,提出了一種基于顯著性檢測(cè)的黃瓜葉部病害圖像分割算法,。首先利用超像素將黃瓜圖像分塊,,獲取黃瓜葉片的邊緣,并提出了一種超像素間權(quán)重計(jì)算方法和顯著種子選取方法,;然后通過流形排序計(jì)算顯著圖,,對(duì)得到的顯著圖進(jìn)行閾值分割,,得到二值圖像;再將二值圖像與原圖像進(jìn)行掩碼運(yùn)算,,得到黃瓜病害葉片,;最后利用超綠特征和數(shù)學(xué)形態(tài)學(xué)對(duì)病害葉片進(jìn)行分割得到病斑。對(duì)常見的黃瓜病害(白粉病,、褐斑病,、霜霉病、炭疽病)圖像進(jìn)行測(cè)試,,結(jié)果表明該算法與Otsu算法和k-means算法相比,,有效解決了冗余分割問題,錯(cuò)分率均在5%以內(nèi),,算法平均執(zhí)行時(shí)間均小于4.000ms,,分割效果更加精確,為后續(xù)構(gòu)建黃瓜病害自動(dòng)識(shí)別系統(tǒng)奠定了基礎(chǔ),。

    Abstract:

    In order to solve the problems of low accuracy of cucumber leaf disease image segmentation in complex background, a new segmentation algorithm of cucumber leaf disease image based on saliency detection (SCLDSD) was proposed. The proposed algorithm mainly consists of two parts: saliency detection in cucumber disease image which is used to get the leaf extraction and image segmentation which is used to get cucumber leaf disease. The algorithm first used the superpixel segmentation method to divide the cucumber image into blocks, got the edge of cucumber leaf preferably, and proposed a new method to calculate the weights among different superpixels. Then the algorithm used Harris points and convex hull to select saliency seeds. After using manifold ranking to compute the saliency map, the threshold segmentation was adopted on the obtained saliency map to get the binary map. At last, the cucumber disease leaf and background of the original image were separated by adding the binary map to the original image. In order to obtain the disease parts, ExG was used to expand the disparity of green parts and lesion parts and then threshold was used to carry out the segmentation. Finally, the morphological operation was processed in order to obtain fuller lesion. The proposed algorithm was tested on common cucumber disease images. The experimental result shows that the algorithm effectively solves the redundant segmentation and its more accurate with the error rate less than 5% and the average execution time of the algorithm less than 4.000ms in segmentation. From the results it can be concluded that the algorithm verifies the feasibility and practicality of the saliency detection algorithm in processing of disease images. Meanwhile it lays the foundation for the subsequent establishment of the automatic identification system of cucumber disease.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

任守綱,陸海飛,袁培森,薛衛(wèi),徐煥良.基于顯著性檢測(cè)的黃瓜葉部病害圖像分割算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(9):11-16. Ren Shougang, Lu Haifei, Yuan Peisen, Xue Wei, Xu Huanliang. Segmentation Algorithm of Cucumber Leaf Disease Image Based on Saliency Detection[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(9):11-16.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-01-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-09-10
  • 出版日期: 2016-09-10
文章二維碼