ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

植物領域知識圖譜構建中本體非分類關系提取方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(61503386)


Research on Ontology Non-taxonomic Relations Extraction in Plant Domain Knowledge Graph Construction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    采用本體學習的方法,以百度百科植物類詞條內容的非結構和半結構化中文文本信息作為語料進行處理,。使用一種有指導的基于依存句法分析的詞匯-語法模式來獲取植物領域的概念,、分類和非分類關系,并分別利用基于詞表過濾的方法和給模式添加限制的方法,,較大程度地提高了關系抽取的精確度,,完成在輕量級本體的基礎上自動構建重量級本體。該方法建立了一個特定領域語料的概念層次,,提高了最具代表性的分類和非分類關系的發(fā)現(xiàn),,并使用OWL語言形式化表達抽取結果。實驗表明,,該方法在非分類關系抽取上取得了較好的結果,,為該領域知識圖譜構建奠定了基礎。

    Abstract:

    In order to provide more specific knowledge and technology of plant field, the main task of KG (knowledge graph) is to extract a wealth of concepts and relationships. Due to the relation extraction is the most difficult in KG construction, this paper makes use of ontology learning, and proposes a nontaxonomic relation learning method to obtain representative concepts and their relations from unstructured and semistructured texts of Baidu Encyclopedia entry content by using lexiconsyntactic patterns based on dependency grammar analysis. Moreover, the methods of adding constraint models and words filtering were adopted to build heavy weight ontology automatically based on a lightweight ontology and greatly improved the precision of the relation extraction. The approach established a concept structure from the plant domain corpus, ameliorated the discovery of the most representative non-taxonomic relation, and formalized them in the standardized OWL 2.0. A set of experiments was performed using the approach implemented in the plant domain. The results indicated that extraction by patterns should be performed directly after natural language processing, which has a comparatively high accuracy compared to the former algorithms, and this approach can extract non-taxonomic relations with high effectiveness, which lays the foundation for KG construction of plant field.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙明,杜亞茹,杜會芳,張家軍,王紅說,陳瑛.植物領域知識圖譜構建中本體非分類關系提取方法[J].農業(yè)機械學報,2016,47(9):278-284. Zhao Ming, Du Yaru, Du Huifang, Zhang Jiajun, Wang Hongshuo, Chen Ying. Research on Ontology Non-taxonomic Relations Extraction in Plant Domain Knowledge Graph Construction[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(9):278-284.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-03-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-09-10
  • 出版日期: 2016-09-10
文章二維碼