ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

植物領(lǐng)域知識(shí)圖譜構(gòu)建中本體非分類(lèi)關(guān)系提取方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61503386)


Research on Ontology Non-taxonomic Relations Extraction in Plant Domain Knowledge Graph Construction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    采用本體學(xué)習(xí)的方法,,以百度百科植物類(lèi)詞條內(nèi)容的非結(jié)構(gòu)和半結(jié)構(gòu)化中文文本信息作為語(yǔ)料進(jìn)行處理。使用一種有指導(dǎo)的基于依存句法分析的詞匯-語(yǔ)法模式來(lái)獲取植物領(lǐng)域的概念、分類(lèi)和非分類(lèi)關(guān)系,,并分別利用基于詞表過(guò)濾的方法和給模式添加限制的方法,,較大程度地提高了關(guān)系抽取的精確度,,完成在輕量級(jí)本體的基礎(chǔ)上自動(dòng)構(gòu)建重量級(jí)本體,。該方法建立了一個(gè)特定領(lǐng)域語(yǔ)料的概念層次,提高了最具代表性的分類(lèi)和非分類(lèi)關(guān)系的發(fā)現(xiàn),,并使用OWL語(yǔ)言形式化表達(dá)抽取結(jié)果,。實(shí)驗(yàn)表明,該方法在非分類(lèi)關(guān)系抽取上取得了較好的結(jié)果,,為該領(lǐng)域知識(shí)圖譜構(gòu)建奠定了基礎(chǔ),。

    Abstract:

    In order to provide more specific knowledge and technology of plant field, the main task of KG (knowledge graph) is to extract a wealth of concepts and relationships. Due to the relation extraction is the most difficult in KG construction, this paper makes use of ontology learning, and proposes a nontaxonomic relation learning method to obtain representative concepts and their relations from unstructured and semistructured texts of Baidu Encyclopedia entry content by using lexiconsyntactic patterns based on dependency grammar analysis. Moreover, the methods of adding constraint models and words filtering were adopted to build heavy weight ontology automatically based on a lightweight ontology and greatly improved the precision of the relation extraction. The approach established a concept structure from the plant domain corpus, ameliorated the discovery of the most representative non-taxonomic relation, and formalized them in the standardized OWL 2.0. A set of experiments was performed using the approach implemented in the plant domain. The results indicated that extraction by patterns should be performed directly after natural language processing, which has a comparatively high accuracy compared to the former algorithms, and this approach can extract non-taxonomic relations with high effectiveness, which lays the foundation for KG construction of plant field.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙明,杜亞茹,杜會(huì)芳,張家軍,王紅說(shuō),陳瑛.植物領(lǐng)域知識(shí)圖譜構(gòu)建中本體非分類(lèi)關(guān)系提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(9):278-284. Zhao Ming, Du Yaru, Du Huifang, Zhang Jiajun, Wang Hongshuo, Chen Ying. Research on Ontology Non-taxonomic Relations Extraction in Plant Domain Knowledge Graph Construction[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(9):278-284.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-03-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-09-10
  • 出版日期: 2016-09-10
文章二維碼