ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于低空遙感與遷移學習的土地利用信息快速制圖方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金青年基金項目(51209153,、41301021),、數(shù)字制圖與國土信息應用工程國家測繪地理信息局重點實驗室開放基金項目(DM2014SC02)和國土資源部地學空間信息技術(shù)重點實驗室開放基金項目(KLGSIT2015-04)


Landuse Information Quick Mapping Based on Low Altitude Remote Sensing Technology and Transfer Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決樣本的手工獲取和常規(guī)的目視解譯難以適應目前農(nóng)業(yè)土地資源信息自動化提取的需求問題,,引入時空數(shù)據(jù)挖掘技術(shù),,運用關(guān)聯(lián)知識遷移學習機制,,提出了一種基于知識遷移學習的高分辨遙感影像土地利用信息分類制圖方法(KTLC)。首先,,運用改進的均值漂移算法對新的待分類制圖影像進行分割獲得影像對象,,然后,將分割后對象的矢量邊界與前時相土地利用矢量專題圖進行配準,、嵌套,,通過疊加分析獲取當前影像中的不變對象,并通過光譜,、空間信息閾值篩選完成不變對象的提純,,進而將歷史專題圖中的地物類別知識遷移到新影像對象上,建立新的特征與地物類別映射關(guān)系,,最后,,運用決策樹構(gòu)建分類規(guī)則完成當前影像的快速分類制圖,并將所提方法與利用易康(eCognition)軟件進行分類(EC)的結(jié)果進行對比,。研究結(jié)果表明,,對于2組實驗影像,KTLC方法分類總體精度分別為88.61%,、88.30%,,EC方法分類的總體精度分別為89.87%、84.84%,,2種方法分類制圖精度相當,,但在效率方面,KTLC方法優(yōu)于EC方法,。

    Abstract:

    Obtaining surface spatiotemporal data rapidly, automatically and accurately is an important issue in agriculture informationization and intellectualization. Samples obtained by manual and conventional manual visual interpretation are difficult to adapt the demands of current agricultural land resources information automatic extraction. At the same time, low altitude remote sensing technology as a kind of emerging technology for earth observation in recent years, with its flexibility, high efficiency, low cost, was widely used in the investigation of all kinds of resources. If only extraction information from single phase image, regardless of the historical image data set information extraction has been completed, it will cause information waste and repeated work. Based on this, spatiotemporal data mining technology was introduced, and related knowledge transfer learning mechanism was used, a novel landuse information classification method based on knowledge transfer learning (KTLC) was proposed. Firstly, new image was segmented by improved mean shift algorithm to obtain image objects. Secondly, the vector boundary of the objects and former historical landuse thematic map were matched and nested, invariant objects were obtained through overlay analysis, and purification of invariant object was finished by spectral and spatial information threshold filtering. The historical features category knowledge of thematic map was transferred to the new image objects. Finally, current images classification mapping was completed based on decision tree, and landuse classification mapping results were completed by the KTLC and eCognition for landuse information mapping classification (EC). The experimental results showed that KTLC could obtain accuracies equivalent to EC, and also outperforms EC in terms of efficiency.

    參考文獻
    相似文獻
    引證文獻
引用本文

魯恒,付蕭,劉超,李龍國,李乃穩(wěn),莊文化.基于低空遙感與遷移學習的土地利用信息快速制圖方法[J].農(nóng)業(yè)機械學報,2016,47(11):262-269. Lu Heng, Fu Xiao, Liu Chao, Li Longguo, Li Naiwen, Zhuang Wenhua. Landuse Information Quick Mapping Based on Low Altitude Remote Sensing Technology and Transfer Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(11):262-269.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-07-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-11-10
  • 出版日期:
文章二維碼