ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多元混沌時(shí)間序列的數(shù)控機(jī)床運(yùn)動(dòng)精度預(yù)測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(51305476)


Prediction of Numerical Control Machine’s Motion Precision Based on Multivariate Chaotic Time Series
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了解決有限長(zhǎng)度且含有噪聲時(shí)的單元精度時(shí)間序列相空間重構(gòu)中的信息丟失問(wèn)題,提出了基于多元混沌時(shí)間序列的數(shù)控機(jī)床運(yùn)動(dòng)精度預(yù)測(cè)方法,。首先,引入多元相空間技術(shù),將多個(gè)精度特征量時(shí)間序列映射到高維相空間,,建立多元精度狀態(tài)空間。然后采用主成分分析法,,對(duì)高維相空間實(shí)現(xiàn)降維,,去除冗余。最后,,構(gòu)建一種小波神經(jīng)網(wǎng)絡(luò)模型,,將重構(gòu)信息輸入到預(yù)測(cè)模型中訓(xùn)練,,實(shí)現(xiàn)對(duì)數(shù)控機(jī)床運(yùn)動(dòng)精度的預(yù)測(cè)。實(shí)驗(yàn)表明,,該方法能夠很好地分析數(shù)控機(jī)床運(yùn)動(dòng)精度變化規(guī)律,,比單元混沌時(shí)間序列方法有更好的預(yù)測(cè)效果,且適應(yīng)性和實(shí)用性更強(qiáng),。

    Abstract:

    In order to solve the problem that information could be easily lost in the phase space constructed by the unit precision time series with finite length or containing noises, the method of predicting numerical control machine’s motion precision was put forward based on multivariate chaotic time series. Firstly, multiple characteristic quantity of motion precision were extracted from CNC machine tool. Delay time and embedding dimension of the multiple motion precision time series were worked out by the C-C algorithm. The low-dimensional sequences were mapped to high-dimensional space to establish a multi-precision state space by phase reconstruction of multivariate time series. The phase space established was the same topological isomorphism with the original system. The state space points’ track was described motion precision’s evolution in multivariate phase space. Then the principal component analysis was used to reduce dimensions of high dimensional phase space and remove redundant information. Finally, the state vector of the phase space was taken as a multi-dimensional input. The predicting model of wavelet neural network could be trained by the information constructed to achieve the motion precision prediction. The experiments results showed that the proposed method could well analyze the changing regulation of NC machine tools motion precision and the mean square error of prediction model was 0.0095. Compared with the way of prediction by the unit chaotic time series, it had better predictive effects, and its adaptability and practicality were stronger.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

杜柳青,曾翠蘭,余永維.基于多元混沌時(shí)間序列的數(shù)控機(jī)床運(yùn)動(dòng)精度預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(3):390-395. DU Liuqing, ZENG Cuilan, YU Yongwei. Prediction of Numerical Control Machine’s Motion Precision Based on Multivariate Chaotic Time Series[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(3):390-395.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-11-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-03-10
  • 出版日期:
文章二維碼