ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于非下采樣Shearlet變換的磁瓦表面裂紋檢測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2015BAF27B01)和四川省科技支撐計(jì)劃項(xiàng)目(2016GZ0160)


Detection of Surface Crack Defects in Magnetic Tile Images Based on Nonsubsampled Shearlet Transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)磁瓦表面裂紋缺陷圖像背景不均勻,、對(duì)比度低和存在紋理干擾等特點(diǎn),提出了一種基于非下采樣Shearlet變換(Nonsubsampled Shearlet transform, NSST)的裂紋檢測(cè)方法,。首先對(duì)原始圖像進(jìn)行多尺度,、多方向NSST分解,得到一個(gè)低頻子帶和多個(gè)高頻子帶,然后利用各向異性擴(kuò)散和改進(jìn)的γ增強(qiáng)方法對(duì)高頻子帶進(jìn)行濾波和增強(qiáng);同時(shí)利用二維高斯函數(shù)對(duì)低頻子帶進(jìn)行卷積操作來(lái)構(gòu)造高斯多尺度空間,估計(jì)出圖像的主要背景,并通過(guò)背景差法得到均勻的低頻目標(biāo)圖像。最后通過(guò)重構(gòu)NSST系數(shù)得到去噪和增強(qiáng)后的均勻目標(biāo)圖像,利用自適應(yīng)閾值分割和區(qū)域連通法提取裂紋缺陷。實(shí)驗(yàn)結(jié)果表明,所提方法檢測(cè)準(zhǔn)確率達(dá)92.5%,優(yōu)于基于形態(tài)學(xué)濾波方法、基于Curvelet變換方法和基于Shearlet變換方法等現(xiàn)有磁瓦表面裂紋檢測(cè)方法。

    Abstract:

    A novel algorithm based on nonsubsampled Shearlet transform (NSST), Gaussian multi-scale space and anisotropic diffusion was proposed for detecting crack defects with uneven background, low contrast, noise corruption and textured interference in magnetic tile surface images. Firstly, NSST was employed to decompose the source magnetic tile image into one low-pass subband and a series of high-pass subbands. Then the anisotropic diffusion and the modified γ enhancement method were applied to remove the noise and enhance the weak object information in the high-pass subbands, respectively. Meanwhile, the background was estimated in the Gaussian multi-scale space constructed by convolving the low-pass subband with a varied two-dimensional Gaussian functions, and the even low-pass object could be obtained by using background subtraction. Finally, inverse NSST was utilized to reconstruct the enhanced object image which was free from noise and grinding texture interference, and crack defects could be segmented from the reconstructed image by applying the adaptive threshold method and regional connectivity function. Experimental results demonstrate that compared with four existing methods (OTSU method, method based on the adaptive morphological filtering, method based on Curvelet transform and texture feature measurement and method based on Shearlet transform), the proposed method achieves better performance in terms of defect detection accuracy.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊成立,殷鳴,蔣紅海,向召偉,殷國(guó)富.基于非下采樣Shearlet變換的磁瓦表面裂紋檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(3):405-412. YANG Chengli, YIN Ming, JIANG Honghai, XIANG Zhaowei, YIN Guofu. Detection of Surface Crack Defects in Magnetic Tile Images Based on Nonsubsampled Shearlet Transform[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(3):405-412.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-10-18
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2017-03-10
  • 出版日期:
文章二維碼