ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于機(jī)器視覺的雞胴體質(zhì)量分級(jí)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

公益性行業(yè)科研專項(xiàng)(201303083-2)


Grading of Chicken Carcass Weight Based on Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    提出一種基于機(jī)器視覺技術(shù)的雞胴體質(zhì)量分級(jí)方法,。使用數(shù)碼相機(jī)在肉雞屠宰廠隨機(jī)采集95幅雞胴體圖像,對(duì)采集圖像預(yù)處理后,,提取出雞胴體投影面積、輪廓長度和胸寬等6個(gè)圖像特征,。然后以這6個(gè)特征參數(shù)為輸入,,利用95個(gè)樣本為訓(xùn)練集,通過回歸分析的方法,,分別建立預(yù)測(cè)雞胴體質(zhì)量的一元線性回歸模型和多元線性回歸模型,,找出預(yù)測(cè)質(zhì)量的最佳模型,最后采集5組共100個(gè)樣本為驗(yàn)證集,,對(duì)最佳分級(jí)模型進(jìn)行驗(yàn)證,。結(jié)果顯示,雞胴體圖像的6個(gè)特征參數(shù)中,,基于投影面積的一元線性模型決定系數(shù)最大,,為0.827,;基于投影面積等4個(gè)特征量的多元線性模型決定系數(shù)最大,,為0.880。根據(jù)樣本數(shù)據(jù)的學(xué)生化殘差剔除了8個(gè)異常點(diǎn)的數(shù)據(jù),,修正后的多元線性模型決定系數(shù)為0.933,,并將其作為最佳模型。利用最佳模型對(duì)驗(yàn)證集樣本進(jìn)行質(zhì)量分級(jí),,模型對(duì)雞胴體質(zhì)量等級(jí)判定的平均正確率可達(dá)89%,。結(jié)果表明基于圖像特征的雞胴體自動(dòng)分級(jí)方法是可行的。

    Abstract:

    An automated grading method of chicken weight using image processing was proposed. Ninetyfive images of chicken were acquired randomly in a poultry slaughtering plant by using a digital camera. After these images were preprocessed, six parameters such as projection area (Sp), contour length (Cp), length (Hp), breast width (Ap), breast length (Bp) and fitting ellipse (Ep) of chicken carcass were extracted from the processed images. Then taking the six parameters as the inputs and ninety five samples as the training set,, the simple linear regression model and multiple linear regression model were established for predicting of chicken weight, respectively. Furthermore, the optimal model was found out among these developed ones according to regression correlation coefficient. Finally, the independent validation set was formed by using 100 samples divided into five groups and employed to validate the optimal model. Results showed that the simple linear model based on the projection area (Sp) of the chicken carcass had the largest R2 of 0.827 in the six simple linear models developed. The multiple linear regression model developed based on the indicators of Sp, Cp, Ap and Bp had the largest R2 of 0.880 in all multiple linear models developed. The adjusted multiple linear regression model had a adjusted R2 of 0.933 after eliminating eight outliers detected by students residuals. When the validation set samples were used to validate the optimal multiple linear model, the average correct rate for weight grading of chicken carcass was 89%, indicating that the proposed method based on image processing was feasible for automatic weight grading of chicken carcasses.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳坤杰,李航,于鎮(zhèn)偉,白龍飛.基于機(jī)器視覺的雞胴體質(zhì)量分級(jí)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(6):290-295,,372. CHEN Kunjie, LI Hang, YU Zhenwei, BAI Longfei. Grading of Chicken Carcass Weight Based on Machine Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(6):290-295,372.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-10-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-11-23
  • 出版日期:
文章二維碼