ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

番茄粘彈性參數(shù)機(jī)器人抓取在線估計(jì)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31471419),、高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金博導(dǎo)類項(xiàng)目(20130097110043)和浙江省自然科學(xué)基金項(xiàng)目(LY17F030006)


Online Estimation of Tomato Viscoelastic Parameters during Robot Grasping
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了使采摘機(jī)器人在抓取過程中能夠?qū)Ρ蛔ス叩恼硰椥粤W(xué)參數(shù)進(jìn)行快速估計(jì),,實(shí)時(shí)優(yōu)化抓取過程,,減少末端執(zhí)行器對(duì)被抓取對(duì)象造成機(jī)械損傷,,以抓取力、變形量,、作用時(shí)間為輸入,,建立了番茄粘彈性參數(shù)估計(jì)的人工神經(jīng)網(wǎng)絡(luò)模型。運(yùn)用質(zhì)構(gòu)儀蠕變?cè)囼?yàn)所測(cè)的力、變形和時(shí)間,,以及粘彈性參數(shù)E1,、E2、η1,、η2作為訓(xùn)練數(shù)據(jù)集,,確定了人工神經(jīng)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)和參數(shù),并測(cè)試了網(wǎng)絡(luò)模型的粘彈性參數(shù)估計(jì)性能,。利用二指機(jī)器人末端執(zhí)行器對(duì)隨機(jī)番茄樣本進(jìn)行抓取試驗(yàn),,并在抓取過程中用此模型來在線估計(jì)粘彈性參數(shù)。通過與質(zhì)構(gòu)儀的實(shí)測(cè)值進(jìn)行對(duì)比發(fā)現(xiàn),,當(dāng)時(shí)間t≥0.2s時(shí),,各參數(shù)的估計(jì)值與實(shí)測(cè)值之間的相對(duì)誤差均在25%以內(nèi),并根據(jù)0.2s時(shí)得到的粘彈性參數(shù)對(duì)機(jī)器人抓取力范圍進(jìn)行了估計(jì),。結(jié)果表明,利用此方法在機(jī)器人抓取過程中可以對(duì)被抓番茄粘彈性特性進(jìn)行估計(jì),,為在線優(yōu)化抓取力提供了依據(jù),。

    Abstract:

    When a picking robot is able to quickly estimate the viscoelastic parameters of the fruits and vegetables in the process of grasping, an optimization of the grasping process in real time can be carried out and the mechanical damage caused by the end-effector can be alleviated. Artificial neural network (ANN) model of tomato viscoelastic parameters estimation was established by using grasping force, deformation and acting time as inputs. The force, deformation and time measured by creep test with texture analyzer, as well as the viscoelastic parameters (E1, E2, η1, η2) were used as the training data set to determine the topological structure and parameters of the artificial neural network. Then performance of the network model was tested. A two finger robot end-effector was applied to grasp tomato samples selected randomly, and the ANN model was used to estimate the viscoelastic parameters online during the process of grasping. Compared with the measured value by texture analyzer, when time was more than or equal to 0.2s, the relative error between the estimated value and the measured value were less than 25%, and according to the viscoelastic parameters obtained from the 0.2s time, the range of the robot’s grasping force was estimated. The results showed that the method could be used to estimate the viscoelastic properties of the grasped tomatoes during the robot grasping process, which provided the basis for the online optimization of grasping force.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

周俊,張娜,孟一猛,王明軍.番茄粘彈性參數(shù)機(jī)器人抓取在線估計(jì)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(8):26-32. ZHOU Jun, ZHANG Na, MENG Yimeng, WANG Mingjun. Online Estimation of Tomato Viscoelastic Parameters during Robot Grasping[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(8):26-32.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-12-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-08-10
  • 出版日期:
文章二維碼