ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SW-SVR的畜禽養(yǎng)殖物聯(lián)網(wǎng)異常數(shù)據(jù)實時檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家高技術(shù)研究發(fā)展計劃(863計劃)項目(2013AA102306)和山東省自主創(chuàng)新項目(2014XGA13054)


Anomaly Data Real-time Detection Method of Livestock Breeding Internet of Things Based on SW-SVR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    畜禽養(yǎng)殖物聯(lián)網(wǎng)由于工作環(huán)境惡劣、網(wǎng)絡(luò)傳輸故障等因素容易產(chǎn)生異常感知數(shù)據(jù),,為保證數(shù)據(jù)質(zhì)量,,根據(jù)畜禽養(yǎng)殖物聯(lián)網(wǎng)數(shù)據(jù)流周期性、時序性等特點,,提出了一種基于滑動窗口與支持向量回歸(Sliding window and support vector machines for regression,,SW-SVR)的異常數(shù)據(jù)實時檢測方法。首先根據(jù)畜禽物聯(lián)網(wǎng)數(shù)據(jù)流特征周期以及采樣頻率確定滑動窗口尺寸,;然后通過SVR模型預(yù)測畜禽養(yǎng)殖物聯(lián)網(wǎng)數(shù)據(jù)流中某一時刻傳感器測量值,;最后計算預(yù)測區(qū)間,根據(jù)實際測量值是否落入該區(qū)間判斷是否異常并對異常數(shù)據(jù)進行置換處理,。采用畜禽養(yǎng)殖物聯(lián)網(wǎng)環(huán)境數(shù)據(jù)進行試驗,,結(jié)果表明:所提滑動窗口計算方法得到的窗口尺寸預(yù)測的MAPE為0.1884,畜禽養(yǎng)殖物聯(lián)網(wǎng)異常數(shù)據(jù)檢測率達98%,,能夠有效檢測和處理畜禽養(yǎng)殖物聯(lián)網(wǎng)數(shù)據(jù)流中的異常數(shù)據(jù),。

    Abstract:

    Due to bad work environment and network transmission failure, it is easy to generate abnormal sensory data in livestock breeding Internet of things system. In order to ensure the quality of sensory data, according to the characteristics of sensory data flow such as periodicity, temporality, infinity, etc., a method was proposed based on sliding window and support vector machines regression (SW-SVR) for livestock breeding Internet of things abnormal sensory data detection in real time. Firstly, the sliding window size was decided according to the characteristic period and sampling frequency of data flow from livestock breeding Internet of things system, and the history data within sliding window was selected as the input value of prediction model. Then, the sensor estimated measurement value at certain moment in livestock breeding Internet of things system was predicted by using SVR model. Finally, the prediction interval (PI) was calculated, and the abnormal sensory data was identified if the sensor actual measurement data fell out of the PI. The abnormal data would be replaced by the predictive data. The abnormal sensory data detection method was tested by data flow from real livestock breeding Internet of things system. Experiment results showed that the mean absolute percent error value of prediction with window size calculated by the sliding window method was 0.1884. The correct detection rate of abnormal data based on SVR model with radial basis function kernel (RBF kernel) achieved 98%, which had higher accuracy compared with BP neural network (BPNN) method. Abnormal data can be effectively detected and treated in livestock breeding Internet of things system.

    參考文獻
    相似文獻
    引證文獻
引用本文

段青玲,肖曉琰,劉怡然,張璐.基于SW-SVR的畜禽養(yǎng)殖物聯(lián)網(wǎng)異常數(shù)據(jù)實時檢測方法[J].農(nóng)業(yè)機械學(xué)報,2017,48(8):159-165. DUAN Qingling, XIAO Xiaoyan, LIU Yiran, ZHANG Lu. Anomaly Data Real-time Detection Method of Livestock Breeding Internet of Things Based on SW-SVR[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(8):159-165.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-12-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-08-10
  • 出版日期:
文章二維碼