ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于GA-BP神經(jīng)網(wǎng)絡(luò)的池塘養(yǎng)殖水溫短期預(yù)測(cè)系統(tǒng)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2015GGX101041)、上海市科技興農(nóng)重點(diǎn)攻關(guān)項(xiàng)目(滬農(nóng)科攻字(2014)第4-6-2號(hào))和廣東省海大集團(tuán)基于物聯(lián)網(wǎng)技術(shù)的智慧水產(chǎn)養(yǎng)殖系統(tǒng)院士工作站(2012B090500008)


Short-term Prediction System of Water Temperature in Pond Aquaculture Based on GA-BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為解決傳統(tǒng)的水溫小樣本非實(shí)時(shí)預(yù)測(cè)方法預(yù)測(cè)精度低,、魯棒性差等問題,,基于物聯(lián)網(wǎng)實(shí)時(shí)數(shù)據(jù),提出了遺傳算法(GA)優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的池塘養(yǎng)殖水溫短期預(yù)測(cè)方法,,并在此基礎(chǔ)上設(shè)計(jì)開發(fā)了池塘養(yǎng)殖水溫預(yù)測(cè)系統(tǒng),,首先采用主成分分析法篩選出影響池塘水溫的關(guān)鍵影響因子,減少輸入元素,;然后使用遺傳算法對(duì)初始權(quán)重和閾值進(jìn)行優(yōu)化,,獲取最優(yōu)參數(shù)并構(gòu)建了基于BP神經(jīng)網(wǎng)絡(luò)的水溫預(yù)測(cè)模型;最后采用Java語言開發(fā)了基于B/S體系結(jié)構(gòu)的預(yù)測(cè)系統(tǒng),。該系統(tǒng)在江蘇省宜興市河蟹養(yǎng)殖池塘進(jìn)行了預(yù)測(cè)驗(yàn)證,。結(jié)果表明:該系統(tǒng)在短期的水溫預(yù)測(cè)中具有準(zhǔn)確的預(yù)測(cè)效果,,與傳統(tǒng)的BP神經(jīng)網(wǎng)絡(luò)算法相比,研究?jī)?nèi)容評(píng)價(jià)指標(biāo)平均絕對(duì)誤差(MAE),、平均絕對(duì)百分誤差(MAPE)和誤差均方根(MSE)分別為0.1968,、0.0079和0.0592,均優(yōu)于單一BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè),可滿足實(shí)際的養(yǎng)殖池塘水溫管理需要,。

    Abstract:

    The pond water temperature is one of the most important parameters which directly affect the feeding, growth, livability and reproduction of aquaculture animals. Thus it is significant to grasp the pond water temperature change for the healthy aquaculture. In order to solve the problems of low precision and poor robustness of traditional forecasting methods, a short-term prediction model of water temperature in aquaculture pond was proposed based on BP neural network optimized by genetic algorithm, and pond aquaculture water temperature prediction system was designed and developed. Firstly, the principal component analysis (PCA) was used to ensure the factors that influenced the water temperature in aquaculture pond. Secondly, the genetic algorithm and BP neural network were integrated to optimize initial weights and threshold. The method not only can get optimal parameter, but also can reduce the errors generated by random initialization. Thirdly, the short-term prediction system was developed by using Java language based on B/S architecture. Finally, the system was applied in Yixing City, Jiangsu Province. Results showed that the mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE) from GA-BP neural network method were 0.1968, 0.0079 and 0.0592, respectively. It was clear that GA-BP neural network was better than BP neural network algorithm. The research result met the practical needs of the pond water temperature management.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳英義,程倩倩,成艷君,于輝輝,張超.基于GA-BP神經(jīng)網(wǎng)絡(luò)的池塘養(yǎng)殖水溫短期預(yù)測(cè)系統(tǒng)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(8):172-178. CHEN Yingyi, CHENG Qianqian, CHENG Yanjun, YU Huihui, ZHANG Chao. Short-term Prediction System of Water Temperature in Pond Aquaculture Based on GA-BP Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(8):172-178.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-12-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-08-10
  • 出版日期:
文章二維碼