ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于DOM及LiDAR的多尺度分割與面向?qū)ο罅窒斗诸?/div>
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(31300533)和農(nóng)業(yè)部農(nóng)業(yè)水資源高效利用重點實驗室開放課題項目(2015001,、2015003)


Multiscale Forest Gap Segmentation and Object-oriented Classification Based on DOM and LiDAR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為研究分割尺度對航空正射影像(DOM)與LiDAR數(shù)據(jù)協(xié)同面向?qū)ο罅窒斗指钆c分類的影響,以東北典型的天然次生林帽兒山實驗林場東林施業(yè)區(qū)為試驗區(qū),對DOM與LiDAR數(shù)據(jù)進行多尺度分割與面向?qū)ο罅窒斗诸悺7指钸^程中,采用基于DOM分割,、基于LiDAR數(shù)據(jù)分割、DOM&LiDAR協(xié)同分割3種分割方案。每種分割方案采用10種尺度,。在每種尺度應用兩種數(shù)據(jù)提取的光譜和高度兩種特征,采用支持向量機分類器(SVM)進行林隙分類,。研究結(jié)果表明:3種分割與分類方案分類精度隨尺度的增大整體呈現(xiàn)下降的趨勢,,與ED3(Modified)趨勢相反,。基于LiDAR數(shù)據(jù)在尺度參數(shù)10獲得了最優(yōu)分割結(jié)果,。在所有尺度上(10~100),,基于LiDAR數(shù)據(jù)分割與分類精度高于其他兩種數(shù)據(jù)源的分類精度,相比單獨使用DOM優(yōu)勢更加明顯,?;贚iDAR數(shù)據(jù)分割與分類方案在尺度參數(shù)10時獲得了最高分類精度(Kappa系數(shù)為80%)。3種分割與分類方案最優(yōu)尺度的分類精度顯著高于其他尺度分類精度,。分割尺度對面向?qū)ο罅窒斗诸惤Y(jié)果有重要影響,。

    Abstract:

    Aiming to study the effect of segmentation scale on object based segmentation and classification of forest gap through fusion of aerial orthophoto (DOM) and LiDAR data, the typical natural secondary forest in Maoershan Experimental Forest Farm Donglin Industry Zone of northeastern China was selected as the experimental area. The DOM and airborne LiDAR were used for multiscale segmentation and object-oriented forest gap classification. In the process of image segmentation, three segmentation schemes (segmentation of DOM, segmentation of LiDAR data and segmentation of a fusion of DOM and LiDAR data) were adopted. For each segmentation scheme, 10 segmentation scales were set, then based on the segmentation results, spectral and height features extracted from DOM and LiDAR data were used for object-oriented forest gap classification with the support vector machine (SVM) classifier. The results showed that the classification accuracies of three segmentation and classification schemes showed a decline trend with the increase of scale, which was opposite with trend of ED3 (Modified). Based on the LiDAR data at scale parameter of 10, the best segmentation result was got. At all scale (10~100), the classification accuracy based on LiDAR segmentation and classification was higher than that based on two other data segmentation and classification schemes, and had the more obvious advantage than using only DOM. Based on scheme of LiDAR data segmentation and classification at scale parameter of 10, the highest classification accuracy was got with Kappa coefficient of 80%. The classification accuracies of three segmentation and classification schemes at the optimal scale were significantly higher than these at other scales. The segmentation scale had important effect on the object-oriented forest gaps classification.

    參考文獻
    相似文獻
    引證文獻
引用本文

毛學剛,侯吉宇,白雪峰,范文義.基于DOM及LiDAR的多尺度分割與面向?qū)ο罅窒斗诸怺J].農(nóng)業(yè)機械學報,2017,48(9):152-159. MAO Xuegang, HOU Jiyu, BAI Xuefeng, FAN Wenyi. Multiscale Forest Gap Segmentation and Object-oriented Classification Based on DOM and LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(9):152-159.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-06-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-09-10
  • 出版日期:
文章二維碼