ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于離散粒子群和偏最小二乘的水源地濁度高光譜反演
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0405801、2017YFC0405804),、國家自然科學(xué)基金項(xiàng)目(51309254),、高分辨率對地觀測系統(tǒng)重大專項(xiàng)(08-Y30B07-9001-13/15-01),、中國水利水電科學(xué)研究院科研專項(xiàng)“十三五”重點(diǎn)科研項(xiàng)目(WR0145B272016)和中國水利水電科學(xué)研究院流域水循環(huán)模擬與調(diào)控國家重點(diǎn)實(shí)驗(yàn)室開放基金項(xiàng)目(IWHR-SKL-201517)


Satellite Hyperspectral Retrieval of Turbidity for Water Source Based on Discrete Particle Swarm and Partial Least Squares
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    隨著面源污染的加劇,,導(dǎo)致水源地水體富營養(yǎng)化程度日趨嚴(yán)重,,濁度作為衡量水體富營養(yǎng)化的一項(xiàng)重要指標(biāo),,是水質(zhì)評價的重要參數(shù),。為降低濁度偏最小二乘(Partial least squares, PLS) 反演模型建模的不確定性,,提高模型反演精度,,提出了基于離散粒子群(Discrete binary particle swarm optimization, DBPSO)和偏最小二乘的水體濁度反演模型。以2015年10月在南水北調(diào)東線重要水源地微山湖獲取的水體濁度和準(zhǔn)同步的HJ-1A HSI高光譜數(shù)據(jù)為例,,利用HJ-1A HSI B26-B105(中心波長:518~870nm)全譜段光譜反射率(Original spectral reflectance, OSR)和歸一化光譜反射率(Normalized spectral reflectance, NSR)直接構(gòu)建濁度OSR-PLS和NSR-PLS反演模型,,同時利用離散粒子群算法優(yōu)選輸入濁度PLS反演模型的最佳原始波段反射率和歸一化光譜反射率,在此基礎(chǔ)上提出并構(gòu)建濁度OSR-DBPSO-PLS和NSR-DBPSO-PLS反演模型,;然后對上述模型進(jìn)行精度評價,,分析光譜歸一化處理和特征波段優(yōu)選對PLS模型反演精度的影響,,選擇精度最高的模型反演微山湖水體濁度分布。結(jié)果表明:NSR-PLS模型精度(R2=0.91)高于OSR-PLS模型(R2=0.50),,對波段進(jìn)行歸一化處理能提高濁度PLS反演模型精度,;DBPSO能夠識別濁度PLS反演的最佳波段,濁度PLS建模所需的波段數(shù)由80個分別減少為44個(OSR波段)和36個(NSR波段),,在此基礎(chǔ)上構(gòu)建的OSR-DBPSO-PLS模型(R2=0.96)和NSR-DBPSO-PLS模型(R2=0.97)均具有較高精度,,顯著高于直接利用全譜波段構(gòu)建的濁度PLS模型反演精度;選擇綜合誤差最小的NSR-DBPSO-PLS模型反演微山湖水體濁度,,反演結(jié)果符合實(shí)際,,該模型適用于HJ-1A HSI數(shù)據(jù)和內(nèi)陸水體濁度反演。

    Abstract:

    With the increase of non-point source pollution emissions, the degree of eutrophication in water source is becoming seriously increase. Turbidity is an important parameter of water quality assessment, as an indicator of eutrophication. A discrete binary particle swarm optimization-partial least squares (PLS) model was proposed to reduce modeling uncertainty of turbidity retrieval using PLS and improve retrieval accuracy. A discrete binary particle swarm optimization was used to select original spectral reflectance and normalized spectral reflectance of concurrent HJ-1A HSI hyperspectral data with the turbidity obtained from October, 2015 in Weishan Lake as the input of partial least squares model. OSR-PLS and NSR-PLS model retrieving turbidity were developed by using original spectral reflectance and normalized spectral reflectance in full spectrum (HJ-1A HSI B26-B105 with 518nm to 870nm (central wavelength)). Meanwhile, the OSR-DBPSO-PLS and NSR-DBPSO-PLS models were developed to retrieve turbidity by using the selected original spectral reflectance and normalized spectral reflectance. The influence of spectral normalized and the characteristic band optimized on PLS model retrieval accuracy were analyzed based on the four models’ elevation. Finally, the highest accuracy model was used to retrieve the turbidity distribution in Weishan Lake. The results indicated that the accuracy of NSR-PLS (R2=0.91) model was better than that of OSR-PLS model (R2=0.50). The normalization of reflectance can improve PLS accuracy of turbidity retrieval. DBPSO can identify the optimal original and normalize spectral reflectance. The number of bands required for turbidity PLS modelling was reduced from 80 to 44 (OSR) and 36 (NSR), respectively. The OSR-DBPSO-PLS (R2=0.96) and NSR-DBPSO-PLS (R2=0.97) modelling based on 44 OSR and 36 NSR, respectively, had high accuracies, which were significantly higher than the OSR-PLS and NSR-PLS modelling by full spectrum. The NSR-DBPSO-PLS model with minimal comprehensive error was selected to retrieve turbidity in Weishan Lake, which was suitable for inland water turbidity retrieval based on HJ-1A HSI data.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

曹引,冶運(yùn)濤,趙紅莉,蔣云鐘,王浩,嚴(yán)登明.基于離散粒子群和偏最小二乘的水源地濁度高光譜反演[J].農(nóng)業(yè)機(jī)械學(xué)報,2018,49(1):173-182. CAO Yin, YE Yuntao, ZHAO Hongli, JIANG Yunzhong, WANG Hao, YAN Dengming. Satellite Hyperspectral Retrieval of Turbidity for Water Source Based on Discrete Particle Swarm and Partial Least Squares[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(1):173-182.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-04-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-01-10
  • 出版日期:
文章二維碼