ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于D-S證據(jù)理論的智能溫室環(huán)境控制決策融合方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(U1504619、U1404615,、61671139),、教育部產(chǎn)學(xué)合作協(xié)同育人項(xiàng)目(201602011005)和河南省科技攻關(guān)計(jì)劃項(xiàng)目(162102210073)


Approach to Decision Fusion for Intelligent Greenhouse Environmental Control Based on D-S Evidence Theory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在無線傳感器網(wǎng)絡(luò)下的智能溫室環(huán)境控制系統(tǒng)中,農(nóng)作物的生長(zhǎng)通常受多種環(huán)境因子共同作用,。根據(jù)溫室環(huán)境控制系統(tǒng)的實(shí)際需求建立基于Dempster-Shafer(D-S)證據(jù)理論的決策框架,,并提出了一種數(shù)據(jù)預(yù)處理和決策融合方法。首先,,使用箱線圖檢測(cè)量測(cè)數(shù)據(jù)中的異常值,,考慮到現(xiàn)有直接剔除異常數(shù)據(jù)處理方法的弊端,提出了一種異常數(shù)據(jù)自適應(yīng)修正方法,;然后,,利用加權(quán)平均距離聚類處理更新后的數(shù)據(jù);最后,,根據(jù)所提出的基于加權(quán)相似度的基本概率分配方法結(jié)合D-S證據(jù)理論進(jìn)行融合,,為溫室環(huán)境控制做出正確決策,。實(shí)驗(yàn)結(jié)果表明,箱線圖檢測(cè)異常數(shù)據(jù)更為準(zhǔn)確,,其檢測(cè)率比狄克遜準(zhǔn)則高近19.2%,,對(duì)于不確定性融合結(jié)果,本文提出的基于加權(quán)相似度的基本概率分配方法相比現(xiàn)有方法降低了1~2個(gè)數(shù)量級(jí),,不僅可以提高溫室環(huán)境參數(shù)融合精度,,加快收斂速度,同時(shí)還能有效地降低決策風(fēng)險(xiǎn),。

    Abstract:

    In the intelligent greenhouse environment control system using wireless sensor networks, the crops growing is usually affected by various factors from the environment. The greenhouse control system makes inappropriate decisions based on the received measurements of wireless sensor networks, which will lead to go against the growth of crops. In view of this, a novel decisionmaking framework based on Dempster-Shafer (D-S) evidence theory was established to meet practical requirements of the greenhouse environment control system. Moreover, two approaches of the data preprocessing and the decision fusion were proposed, respectively. Firstly, the measuring outliers data were detected by using the box-plot, and then an effective approach was proposed to correct them adaptively, which overcame the disadvantage of directly removing the outlier data in existing approaches. The corrected measuring data were also clustered by using the weighted average distance. Finally, a novel basic probability assignment approach was proposed to make correct decisions for the control of greenhouse environment based on the D-S evidence theory. Experimental results demonstrated that the outliers detection rate of the box-plot was more accurate than that of the Dixon criterion (nearly 19.2%). Compared with existing approaches, the fusion performance of the uncertainty was reduced by 1~2 order-of-magnitude in the proposed basic probability assignment approach, which not only increased precision of environmental indicators for the greenhouse control, but also accelerated the convergence process and reduced the risk of decision-makings effectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫力帆,張雅媛,鄭國(guó)強(qiáng),冀保峰,何子述.基于D-S證據(jù)理論的智能溫室環(huán)境控制決策融合方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(1):268-275. SUN Lifan, ZHANG Yayuan, ZHENG Guoqiang, JI Baofeng, HE Zishu. Approach to Decision Fusion for Intelligent Greenhouse Environmental Control Based on D-S Evidence Theory[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(1):268-275.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-08-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-01-10
  • 出版日期:
文章二維碼