ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于計算機(jī)視覺的土壤鎘脅迫生菜葉片污染響應(yīng)分析
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(31471413),、江蘇高校優(yōu)勢學(xué)科建設(shè)工程項目(蘇政辦發(fā)(2011)6號),、江蘇省六大人才高峰項目(ZBZZ-〖JP〗019)和江蘇大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃項目(201710299237W)


Responses Analysis of Lettuce Leaf Pollution in Cadmium Stress Based on Computer Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了實現(xiàn)無損檢測生菜葉片中重金屬鎘的污染程度,以計算機(jī)視覺技術(shù)為研究手段,,結(jié)合圖像處理方法和特征選擇方法,,對4個梯度重金屬鎘脅迫的生菜葉片進(jìn)行識別,。首先利用數(shù)碼相機(jī)獲取生菜葉片圖像,然后使用Kmeans聚類算法分割圖像,,對分割出的目標(biāo)圖像提取圖像顏色,、形狀和紋理特征,共獲取46個圖像特征,。為了使模型更簡便和減少數(shù)據(jù)量,,利用基于變量組合的變量重要性分析(VIAVC)和競爭性自適應(yīng)重加權(quán)算法(CARS)對圖像特征進(jìn)行降維。采用偏最小二乘法判別分析(PLS-DA)和隨機(jī)森林(RF)構(gòu)建模型,,用于生菜鎘脅迫程度的識別,。結(jié)果表明,在7個組合特征模型中,,顏色形狀紋理融合特征所建立的模型給出了最優(yōu)結(jié)果,,測試集分類正確率為92%。用VIAVC和CARS對顏色形狀紋理融合特征進(jìn)行特征選擇,,發(fā)現(xiàn)VIAVC的降維效果優(yōu)于CARS,。使用特征選擇的變量建立模型,RF模型的訓(xùn)練集分類正確率和預(yù)測集分類正確率均高于PLS-DA,,其中,,基于VIAVC的RF模型的訓(xùn)練集和預(yù)測集分類正確率分別為98.0%和96.0%??梢?,基于VIAVC的RF模型在大大降低了特征維數(shù)的前提下,,能夠較好地對不同鎘脅迫程度的生菜葉片進(jìn)行識別。

    Abstract:

    In order to achieve nondestructive detection of heavy metal cadmium in lettuce leaves, computer vision technology was used as the research method, which combined image processing method and feature selection method, to identify four gradients of heavy metal cadmium stress lettuce leaves. First of all, the leaf image of lettuce was obtained by digital camera. Then, the Kmeans clustering algorithm was used to segment the image, and the color, shape and texture of the image were extracted from the extracted target image. A total of 46 image features were obtained. In order to make the model easier and reduce the amount of data, the image feature was dimensioned by competitive adaptive reweighted sampling (CARS) and variable importance analysis based on random variable combination (VIAVC). The partial least squares discriminant analysis (PLS-DA) and random forest (RF) were used to construct the model for identification of cadmium stress in lettuce. The results showed that in the seven combined feature models, the optimal model was given by the model of color, shape and texture fusion. The accuracy of the training set classification was 92%. The color, shape and texture fusion features were reduced by CARS and VIAVC, and it was found that the dimensionality and visualization of VIAVC were better than those of CARS. Using the reduced dimension of the lowdimensional mapping point to build the model, the accuracy of the training set classification and accuracy of the prediction set of RF model were higher than those of the PLS-DA. Among them, the accuracy of the training set and predictive set classification based on VIAVC dimensionality reduction were 98.0% and 96.0%, respectively. It can be seen that the RF model based on VIAVC dimensionality can better identify the lettuce leaves with different cadmium stress levels under the premise of greatly reducing the feature dimension.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫俊,張躍春,毛罕平,武小紅,陳勇,翁褀鵬.基于計算機(jī)視覺的土壤鎘脅迫生菜葉片污染響應(yīng)分析[J].農(nóng)業(yè)機(jī)械學(xué)報,2018,49(3):166-172. SUN Jun, ZHANG Yuechun, MAO Hanping, WU Xiaohong, CHEN Yong, WENG Qipeng. Responses Analysis of Lettuce Leaf Pollution in Cadmium Stress Based on Computer Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(3):166-172.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-08-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-03-10
  • 出版日期:
文章二維碼