ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度信念網(wǎng)絡(luò)的豬咳嗽聲識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

華中農(nóng)業(yè)大學(xué)大北農(nóng)青年學(xué)者提升專項項目(2017DBN005),、現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項目(CARS-36),、國家重點研發(fā)計劃項目(2016YFD0500506)和中央高?;究蒲袠I(yè)務(wù)費專項資金項目(2015PY079)


Recognition of Pig Cough Sound Based on Deep Belief Nets
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了在生豬養(yǎng)殖產(chǎn)生呼吸道疾病的初期,通過監(jiān)測豬咳嗽聲進(jìn)行疾病預(yù)警,提出了基于深度信念網(wǎng)絡(luò)(DBN)對豬咳嗽聲進(jìn)行識別的方法,。以長白豬咳嗽、打噴嚏、吃食,、尖叫,、哼哼、甩耳朵等聲音為研究對象,,利用基于多窗譜的心理聲學(xué)語音增強算法和單參數(shù)雙門限端點檢測對豬聲音進(jìn)行預(yù)處理,,實現(xiàn)豬聲音信號的去噪和有效信號檢測?;跁r間規(guī)整算法提取300維短時能量和720維梅爾頻率倒譜系數(shù)(MFCC)組合成1020維特征參數(shù),,將該組合特征參數(shù)作為DBN學(xué)習(xí)和識別數(shù)據(jù)集,選定3隱層神經(jīng)元個數(shù)分別為42,、17和7,,構(gòu)建網(wǎng)絡(luò)結(jié)構(gòu)為1020-42-17-7-2的5層深度信念網(wǎng)絡(luò)豬咳嗽聲識別模型。通過5折交叉實驗驗證,,基于DBN的豬咳嗽聲識別率和總識別率均達(dá)到90%以上,,誤識別率不超過8.07%,最優(yōu)組豬咳嗽聲識別率達(dá)到94.12%,,誤識別率為7.45%,,總識別率達(dá)到93.21%。進(jìn)一步基于主成分分析法(PCA)提取1020維特征參數(shù)98.01%主成分得到479維特征參數(shù),,通過5折交叉實驗驗證,,豬咳嗽聲識別率和總識別率相對降維前均有所提高,誤識別率有所降低,,最優(yōu)組豬咳嗽聲識別率達(dá)到95.80%,,誤識別率為6.83%,總識別率達(dá)到94.29%,,實驗結(jié)果表明所建模型是有效可行的,。

    Abstract:

    In the early stage, pig cough sound could be detected for early disease warning, and a method based on deep belief nets (DBN) was proposed to construct a pig cough sound recognition model. Pig sounds of Landrace pigs, including cough, sneeze, eating, scream, hum and shaking ears sounds were automatically recorded. The samples were preprocessed by speech enhancement algorithm based on a psychoacoustical model and speech endpoint detection algorithm based on short-time energy to reduce the noise and get useful parts of samples. Based on the dynamic time warping (DTW) algorithm, the short-time energy characteristics were scaled to a 300-dimensional short-time energy feature vector, while the 24-dimensional MFCC characteristics were scaled to a 720-dimensional MFCC feature vector. And then the 300-dimensional short-time energy feature vector and the 720-dimensional MFCC feature vector were combined to construct a 1020-dimensional vector as the input of the deep belief nets. The number of neuron of the three hidden layers were set to be 42, 17 and 7, respectively, so the pig sound recognition model based on DBN was finally designed to be 1020-42-17-7-2. The 5-fold cross validation experiment showed that recognition rate, error recognition rate and total recognition rate of the best experimental group were 94.12%, 7.45% and 93.21%, respectively. Furthermore, the first 479 principal components of 1020 dimension feature parameters were obtained by PCA dimensionality reduction. The recognition rate, error recognition rate and total recognition rate obtained better performance, and the best experimental group reached 95.80%, 6.83% and 94.29%, respectively. The result demonstrated that the DBN model was effective for the pig cough recognition.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黎煊,趙建,高云,雷明剛,劉望宏,龔永杰.基于深度信念網(wǎng)絡(luò)的豬咳嗽聲識別[J].農(nóng)業(yè)機械學(xué)報,2018,49(3):179-186. LI Xuan, ZHAO Jian, GAO Yun, LEI Minggang, LIU Wanghong, GONG Yongjie. Recognition of Pig Cough Sound Based on Deep Belief Nets[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(3):179-186.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-07-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-03-10
  • 出版日期:
文章二維碼