ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于BIGRU的番茄病蟲害問(wèn)答系統(tǒng)問(wèn)句分類研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61503386)


Question Classification of Tomato Pests and Diseases Question Answering System Based on BIGRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    問(wèn)句分類作為問(wèn)答系統(tǒng)的關(guān)鍵模塊,對(duì)系統(tǒng)檢索效率具有決定性作用,。為了對(duì)番茄病蟲害智能問(wèn)答系統(tǒng)用戶問(wèn)句進(jìn)行高效分類,,構(gòu)建了基于word2vec和雙向門控循環(huán)單元神經(jīng)網(wǎng)絡(luò)(Bi-directional gated recurrent unit,,BIGRU)的番茄病蟲害問(wèn)句分類模型,。針對(duì)問(wèn)答系統(tǒng)對(duì)用戶問(wèn)句的語(yǔ)義信息有較高要求的特點(diǎn),,首先利用word2vec將句子中的詞轉(zhuǎn)換為具有語(yǔ)法,、語(yǔ)義信息的詞向量,,利用訓(xùn)練得到的詞向量和BIGRU神經(jīng)網(wǎng)絡(luò)進(jìn)行問(wèn)句分類模型的訓(xùn)練,。實(shí)驗(yàn)選取了2000個(gè)番茄病蟲害相關(guān)的用戶問(wèn)句,,主要分為番茄病害和番茄蟲害兩類。結(jié)果表明,,采用BIGRU的番茄病蟲害問(wèn)句分類模型,,其分類準(zhǔn)確率、召回率和準(zhǔn)確率與召回率的調(diào)和平均值F1分別高于卷積神經(jīng)網(wǎng)絡(luò)(CNN),、K最近鄰等分類算法2~5個(gè)百分點(diǎn),。BIGRU模型結(jié)構(gòu)簡(jiǎn)單,模型訓(xùn)練參數(shù)較少,,模型訓(xùn)練速度快,,符合問(wèn)答系統(tǒng)對(duì)響應(yīng)時(shí)間的要求,。

    Abstract:

    The notable feature of a question answering system is to understand the semantic information of the user’s question. Question classification, as the key module of question answering system, plays a decisive role in the efficiency of system retrieval. In order to classify the user’s questions, a classification model of tomato pests and diseases based on word2vec and bidirectional gated recurrent unit (BIGRU) was constructed. word2vec was used to transform the words in the sentence into the word vector with semantic information. The word vector was used as the initial corpus. Two neural network methods and a machine learning method were adopted to train the classification model. Totally 2000 tomato pests and diseases related questions were selected, which were divided into two categories: tomato diseases and tomato pests. The results showed that the classification accuracy, recall rate and F1 value by using the BIGRU model were 2~5 percentage points higher than those by using convolutional ceural network (CNN) and K-nearest neighbor (KNN) classification algorithm. Further experimental results comparison indicated that the BIGRU model performed the best on tomato pest and diseases question classification. The BIGRU model was simple in structure, less in model training parameters, and fast in training speed. It met the response time requirements of question answering system.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙明,董翠翠,董喬雪,陳瑛.基于BIGRU的番茄病蟲害問(wèn)答系統(tǒng)問(wèn)句分類研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(5):271-276. ZHAO Ming, DONG Cuicui, DONG Qiaoxue, CHEN Ying. Question Classification of Tomato Pests and Diseases Question Answering System Based on BIGRU[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(5):271-276.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-10-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-05-10
  • 出版日期:
文章二維碼