ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于狀態(tài)預(yù)測(cè)的田間機(jī)-地傳感器系統(tǒng)協(xié)同采集方式研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0701001),、國(guó)家自然科學(xué)基金項(xiàng)目(31771682)和廣東省重大科技計(jì)劃項(xiàng)目(2017B010116003)


Cooperative Wind Field Data Acquisition Based on Unmanned Aerial Vehicle Flight Status Modelling for Agricultural Chemical Applications
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    基于旋翼無人機(jī)的低空,、低速,、利用旋翼風(fēng)場(chǎng)作業(yè)等飛行特征,采用機(jī)載北斗定位系統(tǒng)獲取精準(zhǔn)機(jī)體實(shí)時(shí)觀測(cè)值,,協(xié)同地面風(fēng)速傳感器構(gòu)成機(jī)-地傳感器采集系統(tǒng),,嘗試對(duì)具有穩(wěn)定飛行軌跡的無人機(jī)進(jìn)行狀態(tài)預(yù)測(cè)。在充分討論飛行狀態(tài)的預(yù)測(cè)策略,、可預(yù)測(cè)性,、起始點(diǎn)確定等問題基礎(chǔ)上,建立狀態(tài)預(yù)測(cè)模型,,設(shè)計(jì)狀態(tài)預(yù)測(cè)算法用以自動(dòng)判定傳感器采集時(shí)段的起始點(diǎn),。依據(jù)算法展開冠層風(fēng)速田間采集試驗(yàn),對(duì)于無人機(jī)預(yù)測(cè)狀態(tài)數(shù)據(jù)和實(shí)際觀測(cè)數(shù)據(jù)做了對(duì)比分析,,發(fā)現(xiàn)在可置信度為99%水平時(shí),,兩者無差異的概率P值為0.956;同時(shí)統(tǒng)計(jì)出X,、Y,、Z向風(fēng)速最大值出現(xiàn)時(shí)刻均值分別為3.036、2.427,、3.145s,,計(jì)算出對(duì)應(yīng)的標(biāo)準(zhǔn)差分別為0.79、0.87,、0.98s,,說明3向風(fēng)速最大值出現(xiàn)時(shí)刻在5s采樣范圍內(nèi)具有較明顯的區(qū)域性,驗(yàn)證了采集時(shí)刻的準(zhǔn)確性,,表明機(jī)-地協(xié)同實(shí)時(shí)采集旋翼風(fēng)場(chǎng)數(shù)據(jù)的有效性得到了顯著提高,。

    Abstract:

    To study the wind field pattern created by unmanned aerial vehicles (UAVs) in agricultural chemical applications, triggering the wind speed sensors distributed in crop canopy along the flight path simultaneously when the UAV passes over each of them is critical in capturing the instantaneous wind field data. However, in many cases the measurements were triggered manually by human vision which reduced the timeliness and validity of the data. The data acquisition triggering method was improved and automated for wind speed sensors by predicting the exact UAV flyover timing with accurate geo-location information from an onboard Beidou positioning system and the modeling of future flight status based on past flight data given that agricultural UAVs usually operate at low speed and low altitude without overload. Since the weed speed sensors used could only record data for five seconds, a flight status prediction model was developed to determine the triggering timing for data acquisition based on the consistency and stability of the flight direction, speed, and altitude within a certain period of time. Extensive field experiments were conducted, and the model predicted and wind speed sensor measured maximum wind speed data were compared. No significant difference was found between them at a 99% confidence interval with a P value of 0.956. With the improved triggering timing, the averaged maximum wind speed in X, Y, Z axes occurred at 3.036s, 2.427s and 3.145s, respectively, of the five-second logging period with standard deviations of 0.79s, 0.87s and 0.98s, respectively. The maximum wind speed, which corresponded to the wind speed when the UAV flew over each sensor, measured by the improved data acquisition system was ensured to be captured now within the five-second optimal logging period of the wind speed sensors by the improved aerial-and-ground-sensor cooperative sensing system.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李繼宇,蘭玉彬,施葉茵,張亞莉,歐陽(yáng)帆,陳盛德.基于狀態(tài)預(yù)測(cè)的田間機(jī)-地傳感器系統(tǒng)協(xié)同采集方式研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(6):246-253,277. LI Jiyu, LAN Yubin, SHI Yeyin, ZHANG Yali, OUYANG Fan, CHEN Shengde. Cooperative Wind Field Data Acquisition Based on Unmanned Aerial Vehicle Flight Status Modelling for Agricultural Chemical Applications[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(6):246-253,,277.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-12-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-06-10
  • 出版日期:
文章二維碼