ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于低秩自動編碼器及高光譜圖像的茶葉品種鑒別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(31471413)、江蘇高校優(yōu)勢學(xué)科建設(shè)工程項目(蘇政辦發(fā)(2011)6號),、江蘇省六大人才高峰項目(ZBZZ-019)和江蘇大學(xué)大學(xué)生科研立項項目(Y15A038)


Tea Variety Identification Based on Low-rank Stacked Auto-encoder and Hyperspectral Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出一種基于低秩自動編碼器及高光譜圖像技術(shù)的茶葉品種鑒別方法,。應(yīng)用高光譜成像系統(tǒng)采集5個品種的茶葉樣本高光譜圖像數(shù)據(jù),,利用ENVI軟件確定高光譜圖像的感興趣區(qū)域(ROI),,并提取茶葉樣本在ROI的平均光譜作為該樣本的原始光譜數(shù)據(jù),。由于高光譜信息量大,、冗余性強(qiáng)且存在噪聲,,運(yùn)用自動編碼器和低秩矩陣恢復(fù)結(jié)合的低秩自動編碼器(LR-AE)對原始光譜數(shù)據(jù)進(jìn)行降維,,在自動編碼器降維基礎(chǔ)上加入去噪處理,,提取魯棒判別特征。在此基礎(chǔ)上應(yīng)用支持向量機(jī)(SVM)和Softmax分類算法對降維后的茶葉樣本高光譜數(shù)據(jù)分類,。通過5折交叉試驗驗證,,LR-SAE-SVM模型的預(yù)測集準(zhǔn)確率達(dá)到99.37%,SAE-SVM模型的預(yù)測集準(zhǔn)確率為98.82%,;LR-SAE-Softmax模型的預(yù)測集準(zhǔn)確率達(dá)99.04%,,SAE-Softmax模型的預(yù)測集準(zhǔn)確率為97.99%。研究結(jié)果表明,,相較于未進(jìn)行去噪處理的傳統(tǒng)自動編碼器,,LR-SAE降維之后的分類建模效果有所提升,將其應(yīng)用于茶葉品種鑒別是可行,、高效的,。

    Abstract:

    Five different varieties of tea samples were classified with the method combining stacked auto-encoder (SAE) with low-rank matrix recovery (LRMR). The hyperspectral imaging system with spectrum range of 431~962 nm was used to collect five kinds of tea samples containing 618 bands of hyperspectral images, including Huangshan green tea, Longjing, Yixing Mao Feng, Yunwu green tea and Biluochun. The ENVI software was used to determine the region of interest (ROI) of the hyperspectral images, and the average spectral data of the sample in ROI were extracted as the raw spectral information of the sample. Due to the large amount, strong redundancy and much noise of the hyperspectral information, the low-rank stacked autoencoder (LR-SAE), which combined the stacked auto-encoder and the low-rank matrix recovery, was used to reduce the dimensionality of the hyperspectral data of the tea samples. Support vector machine (SVM) and Softmax classification model were applied to identify the tea samples after dimensionality reduction. The 5-fold cross validation experiment results showed that the accuracy of prediction set of LR-SAE-SVM model was 99.37%, and that of SAE-SVM model was 98.82%. As for Softmax classification, the accuracy of prediction set of LR-SAE-Softmax model was 99.04%, and that of SAE-Softmax model was 97.99%. The results showed that the accuracy of the classification model based on LRSAE was improved on some degree and the LRSAE had better robustness than the traditional SAE without denoising. It was feasible and efficient to apply the classification model based on LR-SAE into tea variety identification.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫俊,靳海濤,武小紅,陸虎,沈繼鋒,戴春霞.基于低秩自動編碼器及高光譜圖像的茶葉品種鑒別[J].農(nóng)業(yè)機(jī)械學(xué)報,2018,49(8):316-323. SUN Jun, JIN Haitao, WU Xiaohong, LU Hu, SHEN Jifeng, DAI Chunxia. Tea Variety Identification Based on Low-rank Stacked Auto-encoder and Hyperspectral Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(8):316-323.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-02-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-08-10
  • 出版日期:
文章二維碼