ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于地面激光雷達(dá)點(diǎn)云數(shù)據(jù)的樹種識(shí)別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(41401650),、北京市自然科學(xué)基金項(xiàng)目(8182038)和中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2015ZCQ-LX-01)


Tree Species Identification Methods Based on Point Cloud Data Using Ground-based LiDAR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了能夠更有效地利用地面激光雷達(dá)的點(diǎn)云數(shù)據(jù)識(shí)別樹種,,以北京林業(yè)大學(xué)為研究區(qū)域,,利用FARO Photon 120型地面激光雷達(dá)在研究區(qū)內(nèi)獲取4個(gè)樹種、共92棵樹木的點(diǎn)云數(shù)據(jù),。依據(jù)點(diǎn)云的三維坐標(biāo)值提取研究區(qū)內(nèi)立木的胸徑,、枝下高、樹高,、冠高,、最長冠幅、垂直最長方向冠幅6個(gè)測樹因子,,同時(shí)提取由測樹因子組合而成具有魯棒性的6個(gè)樹形特征參數(shù),,包括冠長樹高比、胸徑樹高比,、冠高樹高比,、分枝角、冠長最大冠幅之比、最長冠幅與垂直方向冠幅之比,。分別使用測樹因子和組合特征參數(shù),,采用支持向量機(jī)、分類回歸決策樹和隨機(jī)森林的方法,,對(duì)樹種進(jìn)行冠幅自動(dòng)識(shí)別,。研究結(jié)果表明:使用測樹因子樹木識(shí)別方法,識(shí)別平均準(zhǔn)確率為0.765,,平均召回率為0.778,,3種識(shí)別方法中,分類效果較好的依次為分類回歸決策樹,、隨機(jī)森林,、支持向量機(jī);使用組合特征參數(shù)樹木識(shí)別方法,,識(shí)別平均準(zhǔn)確率為0.891,,平均召回率為0.896,分類效果較好的方法是隨機(jī)森林和支持向量機(jī),,其次是分類回歸決策樹;總體上來看,,不論是對(duì)于單個(gè)樹種還是總體的準(zhǔn)確率和召回率,,組合特征參數(shù)法均高于測樹因子法,而對(duì)于3種不同的分類方法,,隨機(jī)森林相對(duì)最好,。研究結(jié)果表明,結(jié)合地面激光雷達(dá)獲取的點(diǎn)云和不同機(jī)器學(xué)習(xí)分類方法進(jìn)行樹種識(shí)別分類可以達(dá)到滿意的效果,,且能節(jié)省大量時(shí)間和人力,。

    Abstract:

    The traditional tree species identification depends on timeconsuming and laborintensive efficiency of artificial field survey. In order to more effectively utilize the point cloud data identification tree of groundbased LiDAR, taking Beijing Forestry University as the research area, and FARO Photon 120 groundbased LiDAR was used to obtain point cloud data of a sample set of 92 trees, four tree species in the study area. According to the threedimensional coordinate values of point cloud, the six treemeasuring factors of breast diameter, height of branches, height of tree, height of crown, width of crown, and the longest direction of vertical trees in the study area were extracted, and the extracted treemeasuring factors were combined. The robust tree features six parameters, namely crown length tree height ratio, DBH height ratio, crown height tree height ratio, branch angle, crown length ratio, maximum crown width and vertical direction. For the ratio of crown width, the tree species were automatically identified by using the treemeasuring factor and the combined feature point parameters to support the tree sample by using the support vector machine, the classification regression decision tree and the random forest. The results showed that for the tree identification method using treemeasuring factor, the average accuracy of recognition was 0.765, and the average recall rate was 0.778. Among the three identification methods, the best effect was classification regression decision, followed by random forest, and finally support vector. Using the combined feature parameter tree identification method, the average accuracy of recognition was 0.891, and the average recall rate was 0.896. The best method was random forest and support vector machine, followed by classification regression decision. In general, the combined feature parameter method had higher accuracy and recall rate of single tree species or overall than those of the treemeasuring factor method, random forests were relatively the best for three different classification methods. The research result showed that the tree species identification classification combining the point cloud obtained by ground-based LiDAR and different machine learning classification methods could achieve satisfactory results and save a lot of time and manpower.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王 佳,張隆裕,呂春東,牛利偉.基于地面激光雷達(dá)點(diǎn)云數(shù)據(jù)的樹種識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(11):180-188. WANG Jia, ZHANG Longyu, LV Chundong, NIU Liwei. Tree Species Identification Methods Based on Point Cloud Data Using Ground-based LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(11):180-188.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-07-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-11-10
  • 出版日期: 2018-11-10
文章二維碼