ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

植株點云超體聚類分割方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(51505195),、江蘇省國際科技合作項目(BZ2017067),、江蘇省重點研發(fā)計劃項目(BE2018372)、江蘇省自然科學(xué)基金項目(BK20181443),、鎮(zhèn)江市重點研發(fā)計劃項目(NY2018001)和江蘇高校優(yōu)勢學(xué)科建設(shè)工程項目(PAPD)


Segmentation Method of Supervoxel Clusterings and Salient Map
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統(tǒng)的超體聚類分割對植株存在過分割率高,、實時性差的問題,提出一種融合顯著性特征圖的超體聚類分割方法,。首先,,采用Kinect V2實時獲取目標植株的彩色圖像和深度圖像,將RGB彩色空間圖像轉(zhuǎn)換為CIELab彩色空間圖像,,計算每個像素的顯著性特征值,,獲取彩色特征圖,并融合亮度特征圖和方向特征圖構(gòu)建顯著性特征圖,;然后,,將顯著性特征圖和深度圖像同步對齊,獲得顯著性點云,,八叉樹網(wǎng)格初始化點云,,并通過Mean-Shift算法獲取滿足概率密度閾值的網(wǎng)格點云,取最大概率密度點作為種子點,,基于點對之間的歐氏距離和特征相似度作為區(qū)域生長相似性準則,,生成超體素塊;最后,,通過LCCP算法對顯著性點云進行聚類分割,。實驗結(jié)果表明,改進的顯著性超體聚類分割方法可以大幅提高目標前景分割的準確性和快速性,,有效克服背景噪聲和離群點。

    Abstract:

    The image segmentation of target plant plays an important role in the automation of plant target detection and variable spray. The application of a single two-dimensional feature to object orientation, tracing and other occasions cannot meet the requirements of modern agriculture. However, in the segmentation of the three dimensional characteristics of plants, the traditional supervoxel clustering segmentation has the problem of high segmentation rate and poor real-time performance of plant. To solve this problem, a super voxel segmentation method was proposed, which fused saliency maps. Firstly, the color and depth maps of target plant were acquired in real time by using Kinect V2, and the RGB (RGB color model) color space images were converted into CIELab (CIELab color model) color space images. The eigenvalues of each pixel were calculated, and then the color feature map was obtained. After obtaining three feature graphs, fusion color feature graph, luminance feature graph and direction feature graph were used to construct a significant feature graph, and then the saliency map and the depth map were synchronously aligned to obtain the significant point cloud. The octree grid was used to initialize point cloud, and the grid point cloud was obtained, which satisfied the probability density threshold through Mean-Shift algorithm, and taking the maximum probability density point as the seed point,,based on the Euclidean distance between points and CIELab similarity criterion as regional growth, the super voxels were generated. Finally, the locally convex connected patches (LCCP) algorithm was used to cluster the salient point cloud. The experimental results showed that the improved supervoxels based on salient point cloud-locally convex connected patches (SSV-LCCP) algorithm method can greatly improve the accuracy and rapidity of the target foreground segmentation, and effectively overcome the background noise and outliers.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉慧,劉加林,沈躍,潘成凱.植株點云超體聚類分割方法[J].農(nóng)業(yè)機械學(xué)報,2018,49(12):172-179. LIU Hui, LIU Jialin, SHEN Yue, PAN Chengka. Segmentation Method of Supervoxel Clusterings and Salient Map[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(12):172-179.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-05-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-12-10
  • 出版日期:
文章二維碼