ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于卷積模型的農(nóng)業(yè)問(wèn)答語(yǔ)性特征抽取分析
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61571051)、北京市自然科學(xué)基金項(xiàng)目(4172024)和北京市農(nóng)林科學(xué)院2018年度科研創(chuàng)新平臺(tái)建設(shè)項(xiàng)目(PT2018-25)


Analysis of Extraction of Semantic Feature in Agricultural Question and Answer Based on Convolutional Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    互聯(lián)網(wǎng)農(nóng)技推廣社區(qū)每秒增衍問(wèn)答數(shù)據(jù)近萬(wàn)組,,這些海量數(shù)據(jù)具有隱性的詞性,、情感和冗余向量特征,,實(shí)現(xiàn)數(shù)據(jù)聚合與數(shù)據(jù)塊消減是該領(lǐng)域的難題。提出了一種基于卷積神經(jīng)網(wǎng)絡(luò)的農(nóng)業(yè)問(wèn)答情感極性特征抽取分析模型,,結(jié)合農(nóng)業(yè)分詞字典,對(duì)數(shù)據(jù)集進(jìn)行分詞后使用Skip-gram模型轉(zhuǎn)換為256維的詞向量,利用批規(guī)范后的卷積神經(jīng)網(wǎng)絡(luò)對(duì)數(shù)據(jù)集進(jìn)行訓(xùn)練,,從而得到用于識(shí)別農(nóng)技推廣社區(qū)問(wèn)答詞性情感相似性的神經(jīng)網(wǎng)絡(luò)模型參數(shù)。試驗(yàn)結(jié)果表明,該方法能夠準(zhǔn)確識(shí)別測(cè)試樣例集中的冗余隊(duì)列,,與其他5種文本分類方法進(jìn)行比較,,各項(xiàng)指標(biāo)優(yōu)勢(shì)明顯,針對(duì)測(cè)試集的語(yǔ)性特征抽取準(zhǔn)確率達(dá)到82.7%,。

    Abstract:

    Tens of thousands of question and answer data have been increased per second in the internet agricultural technology extension community, these massive data have features of recessive part of speech, emotion and unwanted vectors, and how to implement data aggregation and data block reduction is the difficult problem in this field. An analytical model for the extraction of emotional polarity in agricultural question and answer based on convolutional neural network was proposed, the training set was transformed into a 256-dimensional word vector by using the Skip-gram model after segmenting the dataset with agricultural word segmentation dictionary. The convolution neural network after batch-normalization specification was used to train the dataset, and the neural network model parameters used to identify the part of speech emotional similarities in the agricultural technology promotion community question and answer were obtained. The experimental results showed that the method could accurately identify redundant queues in the test sample set, and by comparing with the other four text classification methods, there were also obvious advantages in each index, the accuracy of the semantic feature extraction for the test set was up to 82.7%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張明岳,吳華瑞,朱華吉.基于卷積模型的農(nóng)業(yè)問(wèn)答語(yǔ)性特征抽取分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(12):203-210. ZHANG Mingyue, WU Huarui, ZHU Huaji. Analysis of Extraction of Semantic Feature in Agricultural Question and Answer Based on Convolutional Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(12):203-210.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-05-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-12-10
  • 出版日期:
文章二維碼