ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于混合蛙跳優(yōu)化的采摘機器人相機標(biāo)定方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2016YFD0702100)、國家自然科學(xué)面上基金項目(31571568)、國家自然科學(xué)地區(qū)基金項目(61863011),、廣西自然科學(xué)青年基金項目(2015GXNSFBA139264)和廣西壯族自治區(qū)高等學(xué)校科學(xué)研究項目(KY2015YB304)


Camera Calibration Method of Picking Robot Based on Shuffled Frog Leaping Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對采摘機器人領(lǐng)域傳統(tǒng)的張正友相機標(biāo)定方法存在對相機模型參數(shù)初值敏感和標(biāo)定結(jié)果不穩(wěn)定等問題,,提出一種基于改進混合蛙跳和LM算法的相機標(biāo)定方法。該方法把相機標(biāo)定劃分為兩步:①以混合蛙跳優(yōu)化為工具,,求出相機模型參數(shù)的初始值,,避免傳統(tǒng)張正友相機標(biāo)定方法直接求取相機模型的參數(shù)初值所帶來的初值敏感問題。②以改進LM算法對第1步求出的相機模型參數(shù)初值進行非線性優(yōu)化求精,,避免張正友相機標(biāo)定方法須求取相機模型優(yōu)化參數(shù)的雅可比矩陣,,從而導(dǎo)致標(biāo)定結(jié)果不穩(wěn)定的問題。采用OpenCV編寫采摘機器人雙目視覺標(biāo)定系統(tǒng),,分別對傳統(tǒng)張正友相機標(biāo)定方法,、基于遺傳算法的相機標(biāo)定方法、基于標(biāo)準(zhǔn)混合蛙跳算法的相機標(biāo)定方法和本文相機標(biāo)定方法進行相機標(biāo)定試驗,。試驗結(jié)果表明:本文相機標(biāo)定方法所獲得的左相機焦距的絕對誤差為0.065~0.506mm,、相對誤差為1.899%~12.652%,平面靶標(biāo)圖像特征點的平均像素誤差為0.166~0.175像素,;右相機焦距的絕對誤差為0.083~0.360mm,、相對誤差為2429%~11.484%,平面靶標(biāo)圖像特征點的平均像素誤差為0.103~0.114像素,;雙目相機之間距離的絕對誤差為1.866~2.789mm,、相對誤差為3.209%~4.874%。以上參數(shù)精度及收斂速度和穩(wěn)定性均優(yōu)于其他相機標(biāo)定方法,,從而驗證了該方法所獲得的相機標(biāo)定參數(shù)具有較高的準(zhǔn)確性和可靠性,。

    Abstract:

    Due to the traditional Zhang Zhengyou’s camera calibration method of picking robot existed the problems such as sensitive to initial value of camera model parameters and instability of calibration results, a camera calibration method based on improved shuffled frog leaping optimization and LM algorithm was proposed. The camera calibration was divided into two steps: the first step, calculating the initial values of the parameters of camera model with the shuffled frog leaping optimization, which avoided the sensitivity to the initial value of the camera model parameters that was directly calculated with the traditional Zhang Zhengyou’s camera calibration method; the second step, refining the initial values of the parameters of camera model that calculated in the first step with improved nonlinear optimization LM algorithm, which avoided must obtaining the Jacobi matrix to optimize the parameters of the camera model with the Zhang Zhengyou’s camera calibration method, which led to the instability of the calibration results. And the binocular vision calibration system of the picking robot was developed by OpenCV. The camera calibration experiments were carried out on the traditional Zhang Zhengyou’s camera calibration method, the camera calibration method based on genetic algorithm, the camera calibration method based on shuffled frog leaping optimization algorithm and the camera calibration method. The test results showed that the absolute error of the left camera focal length was 0.065~0.100mm, the relative error of the left camera focal length was 1.899%~12.652%, the average pixel error of the left plane target image was 0.166~0.175 pixel, the absolute error of the right camera focal length was 0.083~0.360mm, the relative error of the right camera focal length was 2.429%~11.484%, the average pixel error of the right plane target image was 0.103~0.114 pixel and the absolute error of distance of binocular camera was 1.866~2.789mm, the relative error of the distance between the binocular camera was 3.209%~4.874%, the convergence speed and stability, which were obtained by the camera calibration method, were all better than the other camera calibration methods in the above. So, these test results verified the calibration parameters obtained by the method had high accuracy and reliability.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳科尹,鄒湘軍,關(guān)卓懷,王剛,彭紅星,吳崇友.基于混合蛙跳優(yōu)化的采摘機器人相機標(biāo)定方法[J].農(nóng)業(yè)機械學(xué)報,2019,50(1):23-34. CHEN Keyin, ZOU Xiangjun, GUAN Zhuohuai, WANG Gang, PENG Hongxing, WU Chongyou. Camera Calibration Method of Picking Robot Based on Shuffled Frog Leaping Optimization[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(1):23-34.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-03-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-01-10
  • 出版日期:
文章二維碼