ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于時(shí)序深度學(xué)習(xí)的數(shù)控機(jī)床運(yùn)動(dòng)精度預(yù)測(cè)方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金面上項(xiàng)目(51775074)、重慶市重點(diǎn)產(chǎn)業(yè)共性關(guān)鍵技術(shù)創(chuàng)新重點(diǎn)研發(fā)項(xiàng)目(cstc2017zdcy-zdyfX0066,、cstc2017zdcy-zdyfX0073)和重慶市基礎(chǔ)研究與前沿探索項(xiàng)目(cstc2018jcyjAX0352)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    由于數(shù)控機(jī)床精度演化規(guī)律難以通過數(shù)學(xué)建模分析,,提出了一種基于時(shí)序深度學(xué)習(xí)網(wǎng)絡(luò)的數(shù)控機(jī)床運(yùn)動(dòng)精度建模與預(yù)測(cè)方法,?;陂L短時(shí)記憶網(wǎng)絡(luò)建立時(shí)序深度學(xué)習(xí)預(yù)測(cè)模型,利用相空間重構(gòu)原理構(gòu)建模型時(shí)序輸入向量,,采用多層網(wǎng)格搜索方法選擇最優(yōu)隱含層層數(shù),、隱含層節(jié)點(diǎn)數(shù)等模型參數(shù),以BPTT方法訓(xùn)練模型,;模型自動(dòng)提取運(yùn)動(dòng)精度時(shí)間序列的時(shí)空特征,,挖掘精度時(shí)間序列前后關(guān)聯(lián)信息,對(duì)運(yùn)動(dòng)精度變化趨勢(shì)進(jìn)行預(yù)測(cè),。實(shí)驗(yàn)結(jié)果表明,,基于時(shí)序深度學(xué)習(xí)網(wǎng)絡(luò)的預(yù)測(cè)模型能夠準(zhǔn)確預(yù)測(cè)數(shù)控機(jī)床精度的衰退趨勢(shì),預(yù)測(cè)的最大相對(duì)誤差不大于7.96%,,優(yōu)于傳統(tǒng)方法,。

    Abstract:

    Because of the difficult to analyze the evolution law of CNC machine tools accuracy through mathematical modeling, a method of motion accuracy modeling and prediction based on sequential deep learning network was proposed. A deep learning network was presented based on the long shortterm memory (LSTM). Using the principle of phase space reconstruction, the sequence input vector of the model was constructed. The optimal parameters of the model, such as number of hidden layer and number of hidden layer node were determined based on multilayer grid search algorithm. The model was trained with BPTT method. The mutual information before and after the precision time series was mined with data driven. The temporal and spatial characteristics of the motion accuracy series were automatically extracted through the deep learning network. Finally, the declining trend of motion accuracy was predicted by the model. The experiments results showed that the prediction model based on the sequential deep learning network could predict properly the evolutionary trends and regularity of the precision. The maximum relative error of prediction was not more than 796%. The prediction accuracy of the method was better than that of the traditional methods. The method was helpful for evaluating the reliability of NC machine tools and ensuring the machining accuracy.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

余永維,杜柳青,易小波,陳罡.基于時(shí)序深度學(xué)習(xí)的數(shù)控機(jī)床運(yùn)動(dòng)精度預(yù)測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(1):421-426. YU Yongwei, DU Liuqing, YI Xiaobo, CHEN Gang.[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(1):421-426.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-10-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-01-10
  • 出版日期:
文章二維碼