ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SVM和AdaBoost的棉葉螨危害等級(jí)識(shí)別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFB0501805)


Automatic Recognition for Cotton Spider Mites Damage Level Based on SVM and AdaBoost
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)自然條件下棉葉螨蟲害等級(jí)識(shí)別難的問題,,在自然條件下以普通手機(jī)采集棉葉圖像作為實(shí)驗(yàn)對(duì)象,首先使用大津法和連通區(qū)域標(biāo)記算法,,將棉花葉片圖像與背景分離,,然后,提取不同棉葉螨危害等級(jí)棉葉圖像的顏色,、紋理和邊緣特征數(shù)據(jù),,使用支持向量機(jī)(Support vector machine,SVM)單獨(dú)進(jìn)行分類實(shí)驗(yàn),,得到平均識(shí)別正確率為76.25%,,最后,采用SVM和AdaBoost相結(jié)合的算法,,生成最優(yōu)判別模型,,實(shí)現(xiàn)對(duì)棉葉螨危害等級(jí)的識(shí)別,平均識(shí)別正確率為88.75%,。對(duì)比實(shí)驗(yàn)表明,,提出的棉葉螨危害等級(jí)識(shí)別方法比BP神經(jīng)網(wǎng)絡(luò)的平均識(shí)別正確率高13.75個(gè)百分點(diǎn),比單獨(dú)采用SVM算法高12.5個(gè)百分點(diǎn),,比單獨(dú)采用AdaBoost算法高8.75個(gè)百分點(diǎn),,SVM和AdaBoost相結(jié)合的算法可較好地對(duì)棉葉螨危害等級(jí)進(jìn)行識(shí)別,為棉葉螨數(shù)字化防治和變量噴藥提供了數(shù)據(jù)支持,。

    Abstract:

    Aiming at the difficulty in identifying the level of cotton spider mites under natural conditions, an automatic identification method was proposed for rapid detection of cotton spider mites damage under natural conditions. The damaged cotton leaves images collected by mobile phone under natural conditions were used as the object. Firstly, the Otsu method and the regional interconnection marking algorithm were used to separate image of cotton leaf from background. Then, the authors combined the colors, textures, and edge features of the image of damaged cotton spider mites. The support vector machine (SVM) was used to classify the data separately. The average recognition rate of 76.25% was obtained. Finally, it was tried to recognize the mode based on combining the SVM and AdaBoost algorithm to classify the cotton spider mites hazard criteria. With this mode, the average recognition accuracy rate finally reached 88.75%, which was 13.75 percentage points higher than that of BP neural network, 12.5 percentage points higher than that of the SVM algorithm alone and 8.75 percentage points higher than that of the AdaBoost algorithm alone with comparative experiments. In conclusion, it was fully proved that the identification method mentioned can be used to better identify the cotton spider mites damage level, which provided data support for the digital control of cotton spider mites and variable spraying.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊麗麗,張大衛(wèi),羅君,王振鵬,吳才聰.基于SVM和AdaBoost的棉葉螨危害等級(jí)識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(2):14-20. YANG Lili, ZHANG Dawei, LUO Jun, WANG Zhenpeng, WU Caicong. Automatic Recognition for Cotton Spider Mites Damage Level Based on SVM and AdaBoost[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(2):14-20.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-09-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-02-10
  • 出版日期:
文章二維碼