ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于局部保留降維卷積神經(jīng)網(wǎng)絡(luò)的高光譜圖像分類算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

甘肅省高等學(xué)校科研項(xiàng)目(2016A-004)和甘肅省科技計(jì)劃項(xiàng)目(18JR3RA097)


Hyperspectral Image Classification Algorithm Based on Locally Retained Reduced Dimensional Convolution Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提高高光譜遙感圖像的分類精度,,通過(guò)局部保留判別式分析與深度卷積神經(jīng)網(wǎng)絡(luò)(DCNN)算法,,提出了基于局部保留降維卷積神經(jīng)網(wǎng)絡(luò)的高光譜圖像分類算法,。首先,,用局部保留判別式分析對(duì)高光譜數(shù)據(jù)降維,,再用二維Gabor濾波器對(duì)降維后的高光譜數(shù)據(jù)進(jìn)行濾波,,生成空間隧道信息;其次,,用卷積神經(jīng)網(wǎng)絡(luò)對(duì)原始高光譜數(shù)據(jù)進(jìn)行特征提取,,生成光譜隧道信息,;再次,融合空間隧道信息與光譜隧道信息,,形成空間-光譜特征信息,并將其輸入到深度卷積神經(jīng)網(wǎng)絡(luò),,提取更加有效的特征,;最后,采用雙重優(yōu)選分類器對(duì)最終提取的特征進(jìn)行分類,。將本文方法與CNN,、PCA-SVM、CD-CNN和CNN-PPF等算法在Indian Pines、University of Pavia高光譜遙感數(shù)據(jù)庫(kù)上進(jìn)行性〖JP2〗能比較,。在Indian Pines,、University of Pavia數(shù)據(jù)庫(kù)上,本文算法識(shí)別的整體精度比傳統(tǒng)CNN方法的整體精度分別高3.81個(gè)百分點(diǎn)與6.62個(gè)百分點(diǎn),。實(shí)驗(yàn)結(jié)果表明,,本文算法無(wú)論在分類精度還是Kappa系數(shù)都優(yōu)于另外4種算法。

    Abstract:

    In order to improve the classification accuracy of hyperspectral remote sensing images, a novel hyperspectral image classification algorithm based on local preserving reduced dimensional convolutional neural network (DCNN) was proposed by using local preserving discriminant analysis and deep convolutional neural network (DCNN) algorithm. Firstly, the dimensionality reduction of hyperspectral data was analyzed by local reserved discriminant, and then the spatial tunnel information was filtered by twodimensional Gabor filter. Secondly, the original hyperspectral data were extracted by convolution neural network to generate spectral tunnel information. Thirdly, the spatial tunnel information and spectral tunnel information were integrated to form the airspectrum characteristic information, which was input into deep convolutional neural network to extract more effective features. Finally, the feature of the final extraction was classified by using the dual optimization classifier. The proposed method was compared with CNN, PCA-SVM, CD-CNN and CNN-PPF in the performance of Indian Pines and University of Pavia hyperspectral remote sensing databases. In the database of Indian Pines and University of Pavia, the overall recognition accuracy of the proposed method was 3.81 percentage points and 6.62 percentage points higher than that of the traditional CNN method. Experimental results on two databases showed that the proposed method was superior to the other four methods in both classification accuracy and Kappa coefficient, and it was a better classification method for hyperspectral remote sensing data classification.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

齊永鋒,李發(fā)勇.基于局部保留降維卷積神經(jīng)網(wǎng)絡(luò)的高光譜圖像分類算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(3):136-143. QI Yongfeng, LI Fayong. Hyperspectral Image Classification Algorithm Based on Locally Retained Reduced Dimensional Convolution Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(3):136-143.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-09-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-03-10
  • 出版日期: 2019-03-10
文章二維碼