ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于機(jī)器視覺的水下河蟹識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31571571)、2017年省級(jí)重點(diǎn)研發(fā)專項(xiàng)(BE2017331),、江蘇省漁業(yè)科技類項(xiàng)目(Y2017-36),、鎮(zhèn)江市2017年度科技創(chuàng)新資金項(xiàng)目(重點(diǎn)研發(fā)計(jì)劃-現(xiàn)代農(nóng)業(yè))(NY2017013)、江蘇省高校優(yōu)勢(shì)學(xué)科建設(shè)項(xiàng)目(PAPD)和江蘇省自然科學(xué)基金項(xiàng)目(BK20170536)


Detection of Underwater Crabs Based on Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了探測(cè)河蟹在池塘中的數(shù)量及分布情況,,為自動(dòng)投餌船提供可靠的數(shù)據(jù)反饋,,提出了基于機(jī)器視覺的水下河蟹識(shí)別方法。該方法通過在投餌船下方安裝攝像頭進(jìn)行河蟹圖像實(shí)時(shí)采集,,針對(duì)水下光線衰減大,、視野模糊等特點(diǎn),采用優(yōu)化的Retinex算法提高圖像對(duì)比度,,增強(qiáng)圖像細(xì)節(jié),,修改基于深度卷積神經(jīng)網(wǎng)絡(luò)YOLO V3的輸入輸出,,并采用自建的數(shù)據(jù)集對(duì)其進(jìn)行訓(xùn)練,實(shí)現(xiàn)了對(duì)水下河蟹的高精度識(shí)別,。實(shí)驗(yàn)所訓(xùn)練的YOLO V3模型在測(cè)試集上的平均精度均值達(dá)86.42%,,對(duì)水下河蟹識(shí)別的準(zhǔn)確率為96.65%,召回率為91.30%,。實(shí)驗(yàn)對(duì)比了多種目標(biāo)檢測(cè)算法,,僅有YOLO V3在識(shí)別準(zhǔn)確率和識(shí)別速率上均達(dá)到較高水平。在同一硬件平臺(tái)上YOLO V3的識(shí)別速率為10.67f/s,,優(yōu)于其他算法,,具有較高的實(shí)時(shí)性和應(yīng)用價(jià)值。

    Abstract:

    In order to detect underwater crabs, a detection method based on machine vision was proposed, which can produce necessary feedback data on the number and distribution of crabs to automatic bait casting boat in real time so that the boat can cast baits precisely. An underwater camera with LED light installed at the bottom of the boat was used to capture images of crabs. These images taken under water were enhanced by optimized retinex filter firstly, which can make images clearer and enhance the details in images. Then, a dataset included original images captured underwater, captured from a laboratory and downloaded from webs was built. There were totally 3500 labelled original images in the dataset. The dataset was augmented and divided into training and test datasets. Finally, a deep convolution neural network, YOLO V3 was trained to detect the crabs by training dataset. The mean average precision of trained network reached 86.42% on test dataset, the detection precision for underwater crabs was 96.65% and the recall ratio was 91.30%. Compared with crabs with big size, the crabs with small size were more difficult to be detected. Compared with other methods for object detection, YOLO V3 can reach a high level of both recognition precision and speed. The recognition speed of the proposed method was 10.67f/s, which was higher than that of other methods on the same hardware platform. Therefore, the proposed method was real time and had application values.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙德安,劉曉洋,孫月平,吳任迪,洪劍青,阮承治.基于機(jī)器視覺的水下河蟹識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(3):151-158. ZHAO Dean, LIU Xiaoyang, SUN Yueping, WU Rendi, HONG Jianqing, RUAN Chengzhi. Detection of Underwater Crabs Based on Machine Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(3):151-158.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-01-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-03-10
  • 出版日期: 2019-03-10
文章二維碼