ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于色敏傳感器結(jié)合光譜技術(shù)的大米儲(chǔ)藏期鑒別
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0401205-3)


Identification of Rice with Different Storage Time Based on Color-sensitive Sensor Array Combined with Visible-near-infrared Spectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    應(yīng)用色敏傳感器陣列(CSA)結(jié)合可見/近紅外(Vis-NIR)光譜檢測(cè)技術(shù),,對(duì)大米儲(chǔ)藏時(shí)間進(jìn)行鑒別,。大米按不同儲(chǔ)藏期(0,、1、2,、4,、6個(gè)月)分為5組。色敏傳感器由氟硼吡咯類色敏材料制成,,與大米揮發(fā)性氣體發(fā)生反應(yīng)后,,分別提取色敏材料的光譜數(shù)據(jù)。光譜數(shù)據(jù)經(jīng) SNV算法預(yù)處理后,,用Si-PLS算法提取3類光譜數(shù)據(jù)的最佳光譜區(qū)間并合成一個(gè)數(shù)據(jù)集,。分別用遺傳算法(GA)、無信息變量消除法(UVE)和蟻群算法(ACO)提取光譜變量,。并結(jié)合主成分分析(PCA)和線性判別分析(LDA)進(jìn)行模式識(shí)別,。結(jié)果表明,用Si-PLS-UVE提取的光譜變量建立的LDA預(yù)測(cè)模型正確識(shí)別率最高,。取主成分?jǐn)?shù)為9時(shí),,訓(xùn)練集正確識(shí)別率為98%,校正集正確識(shí)別率為96%,,為大米儲(chǔ)藏時(shí)間的檢測(cè)提供了一種可行的方法

    Abstract:

    Rice is gradually aged during transportation and storage, and its degree of aging is an important factor affecting the quality of rice. A color-sensitive sensor array (CSA) combined with visible-near-infrared spectroscopy system was used to identify rice in different storage periods. Rice samples were stored under constant temperature and humidity conditions and divided into five groups according to different storage periods (0 month, 1 month, 2 months, 4 months and 6 months). CSA was made of three boron-dipyrromethene (BODIPY) dyes to capture the volatile organic compounds. After reacting with volatile organic compounds of rice in different storage periods, the spectral data of the color sensitive materials were separately extracted by the detection system. The optimal spectral range of the three types of spectral data was extracted using the Si-PLS algorithm. After the spectral interval data fusion, the characteristic spectral variables were extracted by genetic algorithm (GA), no information variable elimination method (UVE) and ant colony algorithm (ACO), respectively. Pattern recognition was performed by using principal component analysis (PCA) and linear discriminant analysis (LDA). The results showed that the LDA prediction model established by Si-PLS-UVE extracted spectral variables had the highest recognition rate. When the number of PCs was 9, the correct recognition rate of the calibration set and prediction set was 98% and 96%. The research result provided a viable method for detecting rice storage time.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

林顥,王卓,陳全勝,林金金.基于色敏傳感器結(jié)合光譜技術(shù)的大米儲(chǔ)藏期鑒別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(6):359-364. LIN Hao, WANG Zhuo, CHEN Quansheng, LIN Jinjin. Identification of Rice with Different Storage Time Based on Color-sensitive Sensor Array Combined with Visible-near-infrared Spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(6):359-364.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-12-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-06-10
  • 出版日期:
文章二維碼