ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于全子集-分位數(shù)回歸的土壤含鹽量反演研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403302)和國(guó)家自然科學(xué)基金項(xiàng)目(41502225)


Soil Salinity Inversion Based on Best Subsets-Quantile Regression Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提高植被覆蓋條件下衛(wèi)星遙感對(duì)土壤含鹽量的估測(cè)精度,以河套灌區(qū)解放閘灌域?yàn)檠芯繀^(qū),,以高分一號(hào)衛(wèi)星影像為數(shù)據(jù)源,,同步采集不同深度土壤含鹽量,通過(guò)全子集篩選法(Best subset selection)分析不同波段和光譜指數(shù)對(duì)于不同深度土壤含鹽量的敏感性,,并采用人工神經(jīng)網(wǎng)絡(luò)(Artificial neural network,,ANN)、支持向量機(jī)(Support vector machine,,SVM)和分位數(shù)回歸(Quantile regression,,QR)3種方法,構(gòu)建全子集篩選前后0~20cm,、20~40cm,、0~40cm、40~60cm,、0~60cm等不同深度下的土壤含鹽量反演模型,。結(jié)果表明,B4,、BI,、SI1、SI3是0~20cm,、0~40cm處土壤含鹽量的敏感變量組合,,B4、BI、NDVI為20~40cm,、40~60cm,、0~60cm處土壤含鹽量的敏感變量組合;在各深度下,,分位數(shù)回歸模型的精度最高,,模型的決定系數(shù)R2c1、R2v1均在0.4以上,,均方根誤差RMSEc1,、RMSEv1均小于0.4%,SVM次之,,ANN最差,;在20~40cm深度下QR反演模型效果優(yōu)于其他深度,為本文土壤含鹽量估算的最優(yōu)模型,,其建模和驗(yàn)證的決定系數(shù)R2c1,、R2v1分別為0.611和0.671,建模和驗(yàn)證均方根誤差RMSEc1,、RMSEv1分別為0.177%和0.160%,。本研究可為衛(wèi)星遙感大范圍監(jiān)測(cè)植被覆蓋條件下土壤鹽漬化程度提供參考。

    Abstract:

    The soil salinity is essential for the morphological development, growth process and final yield of crops in the irrigation area. With present methods, satellite remote sensing though was noninvasive, dynamic, rapid and macroscopic, estimated soil salinity of soil covered by vegetation have less significant effect, yet. In order to improve the estimation effect, soil salinity at different depths at Hetao Irrigation Area was collected. GF-1 image simultaneous was downloaded as the data source. Best subset selection was used to analyze the sensitivity of different bands and spectral indices to soil salinity at different depths. RMSE, R2, AI(xiàn)C and SI(xiàn)C were used to determine the optimal combination mode of the sensitive independent variables number at different depths. Based on these, artificial neural network (ANN), support vector machine (SVM) and quantile regression (QR) were used to construct soil salinity inversion model at such depths as: 0~20cm, 20~40cm, 0~40cm, 40~60cm and 0~60cm before and after best subset selection. The determination coefficient for calibration set before best subset selection (R2c0), determination coefficient for calibration set after best subset selection (R2c1), determination coefficient for verification set before best subset selection (R2v0), determination coefficient for verification set after best subset selection (R2v1), root mean square error for calibration set before best subset selection (RMSEc0), root mean square error for calibration set after best subset selection (RMSEc1), root mean square error for verification set before best subset selection (RMSEv0) and root mean square error for verification set after best subset selection (RMSEv1) were used to evaluate the effects of the models. The results showed that B4, BI, SI1 and SI3 were sensitive variable combinations of soil salinity at depths of 0~20cm and 0~40cm. B4, BI and NDVI were sensitive variable combinations of soil salinity at depths of 20~40cm, 40~60cm and 0~60cm. QR inversion model showed its good performance because of its strong robustness. With R2c1 and R2v1 were both above 04, and RMSEc1 and RMSEv1 were both under 04%; followed by SVM, and ANN was the worst. Compared with other depths, the QR inversion model performed best at depths of 20~40cm, with R2c1 of 0611, R2v1 of 0.671, RMSEc1 of 0.177%, and RMSEv1 of 0.160%. The combination of best subset selection and QR method in the modeling analysis of soil salinity provided a new approach to optimize the satellite multispectral model and quickly measure the soil salinity. The research result provided a reference for the widescale soil salinity monitoring of soil covered by vegetation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張智韜,韓佳,王新濤,陳皓銳,魏廣飛,姚志華.基于全子集-分位數(shù)回歸的土壤含鹽量反演研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(10):142-152. ZHANG Zhitao, HAN Jia, WANG Xintao, CHEN Haorui, WEI Guangfei, YAO Zhihua. Soil Salinity Inversion Based on Best Subsets-Quantile Regression Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(10):142-152.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-07-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-10-10
  • 出版日期: 2019-10-10
文章二維碼