ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于地基LiDAR高度指標(biāo)的小麥生物量監(jiān)測研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300601),、中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(SYSB201801)和國家自然科學(xué)基金項(xiàng)目(31871524)


Monitoring of Wheat Biomass Based on TerrestrialLiDAR Height Metric
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為探討LiDAR監(jiān)測作物生物量的可行性和方法,,以小麥為研究對象,,通過田間試驗(yàn)獲取關(guān)鍵生育期的小麥LiDAR點(diǎn)云高度指標(biāo)和地上部生物量,基于冪函數(shù)回歸與支持向量回歸,、利用十折交叉驗(yàn)證法分別進(jìn)行特征選擇和模型構(gòu)建,,選取各算法最優(yōu)的全生育期小麥地上部生物量監(jiān)測模型,并在測試集上對模型的預(yù)測能力進(jìn)行檢驗(yàn)與比較,。結(jié)果表明:利用H95和生育期特征所構(gòu)建的全生育期支持向量回歸模型精度最高,,訓(xùn)練集上決定系數(shù)R2達(dá)到0.814,測試集結(jié)果(R2=0.821,,RMSE為1.730t/hm2,,RRMSE為32.77%)表明,,模型具有較好的準(zhǔn)確性;利用Hmean所構(gòu)建的全生育期冪函數(shù)回歸模型決定系數(shù)R2達(dá)到0.809,,測試集結(jié)果(R2=0.815,,RMSE為1.760t/hm2,RRMSE為33.33%)也表明模型具有較好的準(zhǔn)確性,;高度指標(biāo)估測小麥生物量具有先天局限性,,所構(gòu)建模型較適宜于監(jiān)測小麥地上部生物量小于10t/hm2的情況,在超過10t/hm2的樣本集上,,95%的模型預(yù)測值被低估,,RMSE呈指數(shù)增長;生育期特征有利于提升監(jiān)測模型預(yù)測精度,。

    Abstract:

    Rapid, nondestructive and accurate monitoring of crop biomass is of great significance for crop productivity estimation and intelligent management. In order to explore the feasibility of monitoring crop biomass with light detection and ranging (LiDAR), LiDAR point cloud height metrics and aboveground biomass were obtained from field trials at key growth stages of wheat. Then based on the power function regression and support vector regression, the tenfold crossvalidation method was used to pick features and construct models, and the optimal wheat aboveground biomass monitoring models for whole growth period were selected respectively. Finally, the prediction abilities of the two models were tested and compared on the test set. The results showed that the support vector regression model constructed by the H95 and growth period provided the highest accuracy with an R2 being as high as 0.814 on training set, and its test results were with R2 of 0.821, RMSE of 1.730t/hm2, and RRMSE of 32.77%, which indicated that the model possessed good accuracy and adaptability. The power function regression model constructed by Hmean provided an R2 of 0809, and its test results were with R2 of 0.815, RMSE of 1.760t/hm2, and RRMSE of 33.33%, which also indicated that the model possessed good accuracy and adaptability. Estimation of wheat biomass by a height metric had inherent limitations, and the two models were more suitable for monitoring the aboveground biomass of wheat values less than 10t/hm2. On the whole sample set with aboveground biomass exceeding 10t/hm2, 95% of the predicted values of the models were underestimated and RMSE was increased exponentially. The feature of growth period was helpful to improve the prediction accuracy of the monitoring model.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

邱小雷,方圓,郭泰,程濤,朱艷,姚霞.基于地基LiDAR高度指標(biāo)的小麥生物量監(jiān)測研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(10):159-166. QIU Xiaolei, FANG Yuan, GUO Tai, CHENG Tao, ZHU Yan, YAO Xia. Monitoring of Wheat Biomass Based on TerrestrialLiDAR Height Metric[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(10):159-166.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-03-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-10-10
  • 出版日期: 2019-10-10
文章二維碼