ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度自編碼器的大型龍門加工中心熱誤差建模方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金面上項目(51775074),、重慶市重點產業(yè)共性關鍵技術創(chuàng)新重點研發(fā)項目(cstc2017zdcy-zdyfX0066、cstc2017zdcy-zdyfX0073)和重慶市基礎研究與前沿探索項目(cstc2018jcyjAX0352)


Thermal Error Modeling Method Based on Stacked Auto-encoder for Large Gantry Fivesided Machining Center
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高熱誤差模型的預測能力,,提出一種基于深度學習方法的數(shù)控機床熱誤差建模方法,。利用模糊聚類法和灰色關聯(lián)度分析法選取溫度變量的熱敏感點,,采用深度自編碼器(Stacked automatic encoder, SAE)網絡從選出的輸入樣本中提取特征,構建特征集,,然后使用遺傳優(yōu)化算法(Genetic optimization algorithm, GA)對BP神經網絡參數(shù)進行尋優(yōu),,從而提出一種基于SAE-GA-BP的數(shù)控機床熱誤差建模方法,。以某大型龍門五面加工中心為實驗對象,研究并選擇了加工中心加工過程中的主要誤差源——主軸熱誤差進行補償,,對主軸熱誤差深度學習模型和多元回歸模型進行了分析對比,。結果表明,在預測精度方面所提出的建模方法優(yōu)于傳統(tǒng)多元回歸模型,,從而驗證了該建模方法的可行性和有效性,。

    Abstract:

    A thermal error modeling method of NC machine tools based on deep learning method was proposed in order to improve the prediction ability of thermal error model. Fuzzy clustering method and grey relationship analysis method were used to select the sensitive points of temperature variables and the stacked automatic encoder (SAE) network was used to extract the features of the temperature variables from the selected input samples to construct the feature sets. Then, genetic optimization algorithm (GA) was used to optimize BP neural network parameters so as to propose a thermal error modeling method based on SAE-GA-BP neural network for NC machine tools. Taking a large gantry fivesided machining center as the experimental object, the spindle thermal error of the large gantry fivesided machining center was studied and selected as the main error source to achieve compensation in the machining process. The deep learning model of main shaft thermal error was compared with the multiple regression model. The experimental results showed that the proposed modeling method was better than the traditional multiple regression model in prediction accuracy of the thermal error of NC machine tools, which verified the feasibility and effectiveness of the proposed thermal error modeling method.

    參考文獻
    相似文獻
    引證文獻
引用本文

杜柳青,王承輝,余永維,徐李.基于深度自編碼器的大型龍門加工中心熱誤差建模方法[J].農業(yè)機械學報,2019,50(10):395-400. DU Liuqing, WANG Chenghui, YU Yongwei, XU Li. Thermal Error Modeling Method Based on Stacked Auto-encoder for Large Gantry Fivesided Machining Center[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(10):395-400.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-03-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-10-10
  • 出版日期: 2019-10-10
文章二維碼