ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度學(xué)習(xí)的種鴨蛋孵化早期受精信息無(wú)損檢測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金面上項(xiàng)目(31871863),、“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2015BAD19B05)和公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)(201303084)


Non-destructive Testing of Early Fertilization Information in Duck Egg Laying Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)我國(guó)鴨蛋孵化行業(yè)剔除無(wú)精蛋的方法效率低,、剔除的無(wú)精蛋已喪失食用價(jià)值,、造成資源巨大浪費(fèi)的問(wèn)題,,運(yùn)用機(jī)器視覺(jué)技術(shù),,以孵化至第3天的種鴨蛋為研究對(duì)象,運(yùn)用深度卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural networks,,CNN)端對(duì)端的特點(diǎn),,在Alexnet神經(jīng)網(wǎng)絡(luò)基礎(chǔ)上進(jìn)行改進(jìn),將孵化第3天的種鴨蛋透射圖像直接輸入到深度卷積神經(jīng)網(wǎng)絡(luò),。用卷積層代替全連接層,,改變卷積核的尺寸,搭建了種鴨蛋受精信息識(shí)別網(wǎng)絡(luò)(Eggnet)模型,,實(shí)現(xiàn)了對(duì)種鴨蛋孵化早期受精信息的無(wú)損判別,。試驗(yàn)結(jié)果表明,該方法對(duì)孵化第3天的種鴨蛋圖像測(cè)試集分類(lèi)準(zhǔn)確率高達(dá)98.87%,,驗(yàn)證集分類(lèi)準(zhǔn)確率為97.97%,,平均單枚蛋檢測(cè)時(shí)間僅為0.24s。

    Abstract:

    China is a big country in the production of duck eggs and ducks. The duck egg hatching industry has a huge output. It needs to incubate billions of ducklings every year to meet the production needs. At present, the method of removing the infertile eggs in the duck egg hatching industry in China is to visually recognize the eggs by artificially photographing the eggs about 7 days after hatching. This method is inefficient and has no edible value after 7 days of incubation, which will cause huge waste of resources. Machine vision technology was used to hatch the third day of the duck eggs. The end-to-end characteristics of the deep convolutional neural network was used to the image of the duck egg on the third day of incubation, and it was directly input into the neural network, and the Alexnet neural network. The convolutional layer was used to replace the fully connected layer, and the size of the convolution kernel was changed. An egg net fertilization information recognition network (Eggnet) model was established to realize the nondestructive discrimination of the fertilization information in the early hatching of the duck eggs. The test results showed that the accuracy rate of the method for the classification of the duck eggs in the third day of hatching was as high as 98.87%, the accuracy of the verification set was 97.97%, and the average single egg detection time was only 0.24s. This technology can be used in the actual production of duck egg hatching industry in the later stage. It would replace the artificial egg method to select the infertile egg. It can solve the problem of automatic device installation in the egg hatching industry. It had broad application space.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李慶旭,王巧華,顧偉,施行,馬美湖.基于深度學(xué)習(xí)的種鴨蛋孵化早期受精信息無(wú)損檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(1):188-194. LI Qingxu, WANG Qiaohua, GU Wei, SHI Hang, MA Meihu. Non-destructive Testing of Early Fertilization Information in Duck Egg Laying Based on Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(1):188-194.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-06-25
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2020-01-10
  • 出版日期:
文章二維碼