ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

玉米冠層LAI反演中UAV影像鏡面反射去除方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0300903)、國(guó)家自然科學(xué)基金項(xiàng)目(41671433)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2019TC117,、2019TC138)


Specular Reflection Removal of UAV Image in Corn Canopy LAI Inversion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)玉米葉片反射太陽(yáng)光時(shí)因鏡面反射導(dǎo)致獲得的無(wú)人機(jī)影像反射率中存在與冠層結(jié)構(gòu)無(wú)關(guān)的鏡面反射部分,從而影響玉米冠層LAI的反演精度問(wèn)題,,本研究利用小波變換對(duì)無(wú)人機(jī)影像不同波段的閾值設(shè)置,,在不影響漫反射的前提下削弱鏡面反射成分,盡量只保留與冠層結(jié)構(gòu)有關(guān)的反射率成分,。以2018年7月15日和7月26日獲取的河北農(nóng)業(yè)大學(xué)辛集試驗(yàn)站多光譜無(wú)人機(jī)影像為數(shù)據(jù)源,,構(gòu)建了NDVI、GNDVI,、SAVI和EVI 4個(gè)植被指數(shù),,并分別與ln(LAI)構(gòu)建玉米冠層的單變量反演模型,利用決定系數(shù)和均方根誤差進(jìn)行LAI反演精度評(píng)價(jià),。精度評(píng)價(jià)結(jié)果表明,,在7月15日玉米植株較稀疏時(shí),去除鏡面反射后,,4個(gè)植被指數(shù)反演LAI與實(shí)測(cè)LAI的決定系數(shù)分別從0.7190,、0.5598、0.6241,、0.5985上升至0.7633,、0.6940、0.6497,、0.6194,,均方根誤差分別從0.2244、0.2526,、0.2214,、0.2245下降到0.1880、0.1958,、0.1918,、0.1987,說(shuō)明去除鏡面反射可以提高LAI的反演精度,。在7月26日玉米植株相對(duì)茂密時(shí),,去除鏡面反射后,4個(gè)指數(shù)構(gòu)建模型對(duì)應(yīng)的決定系數(shù)也同樣提高,,但在這種情況下,,NDVI和GNDVI容易發(fā)生飽和,用閾值法降低反射率反而會(huì)加劇飽和現(xiàn)象,,使這2個(gè)指數(shù)不能充分反映LAI的變化,。SAVI和EVI因?yàn)榧尤肓斯趯颖尘罢{(diào)整因子,,植被指數(shù)的變化得到放大,二者在去除鏡面反射后與ln(LAI)擬合模型的決定系數(shù)都達(dá)到0.6以上,,因此,,在植被覆蓋較茂密時(shí),SAVI指數(shù)和EVI指數(shù)更適合用于LAI反演,。

    Abstract:

    In order to solve the problem of accuracy of inversion of corn canopy LAI, it is necessary to study the effect of specular reflection on the image reflectance of unmanned aerial vehicle (UAV), which is independent of canopy structure. The wavelet transform was used to set the threshold of different bands of UAV image, and the specular reflection was weakened without affecting the diffuse reflection. The vegetation indices: NDVI, GNDVI, SAVI and EVI were constructed by using multispectral UAV images of the Hebei Agricultural University Xinji Test Station acquired on July 15th and 26th, 2018. The single-variable inversion model of maize canopy LAI was constructed, and the accuracy of LAI inversion was evaluated by R2 and RMSE. The results showed that when the maize plants were sparse on July 15th, the R2 of vegetation indices and measured LAI after removing specular reflection were raised from 0.7190, 0.5598, 0.6241 and 0.5985 to 0.7633, 0.6940, 0.6497 and 0.6194, and the RMSE was also decreased from 0.2244, 0.2526, 0.2214 and 0.2245 to 0.1880, 0.1958, 0.1918 and 0.1987, which showed that removing specular reflection can improve the accuracy of LAI inversion. On July 26th, when the maize plants were relatively dense, the R2 of the four indices were also increased after the removal of specular reflection, which proved that the removal of specular reflection could improve the correlation between vegetation indices and LAI. However, in this case, NDVI and GNDVI tended to be saturated, and reducing the reflectivity by threshold method would aggravate the saturation phenomenon, so the two indices could not fully reflect the change of LAI. Meanwhile, SAVI and EVI were amplified by adding a canopy background adjustment factor, and their R2 of fitting model with ln(LAI) were both over 0.6 after removing specular reflection. Thus SAVI and EVI were more suitable for LAI inversion when vegetation cover was dense.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

蘇偉,謝茈萱,王偉,金添,王新盛.玉米冠層LAI反演中UAV影像鏡面反射去除方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(5):173-181. SU Wei, XIE Zixuan, WANG Wei, JIN Tian, WANG Xinsheng. Specular Reflection Removal of UAV Image in Corn Canopy LAI Inversion[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(5):173-181.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-09-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-05-10
  • 出版日期:
文章二維碼