ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于BiGRU_MulCNN的農(nóng)業(yè)問答問句分類技術(shù)研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(61871041、61571051)和北京市自然科學(xué)基金項目(4172024,、4172026)


Classification Technology of Agricultural Questions Based on BiGRU_MulCNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    “中國農(nóng)技推廣”問答社區(qū)每天新增提問數(shù)據(jù)近萬條,,對提問的有效分類是實現(xiàn)智能問答的關(guān)鍵技術(shù)環(huán)節(jié)。海量提問數(shù)據(jù)具有特征稀疏性強,、噪聲大,、規(guī)范性差的特點,制約了文本分類效果,。為了改善農(nóng)業(yè)問答問句短文本分類性能,提出了BiGRU_MulCNN分類模型,,運用TF-IDF算法拓展文本特征,,并加權(quán)表示文本詞向量,利用雙向門控循環(huán)單元神經(jīng)網(wǎng)絡(luò)獲取輸入詞向量的上下文特征信息,,構(gòu)建多尺度并行卷積神經(jīng)網(wǎng)絡(luò),,進行多粒度的特征提取。試驗結(jié)果表明,,基于混合神經(jīng)網(wǎng)絡(luò)的短文本分類模型可以優(yōu)化文本表示和文本特征提取,,能夠準確地對用戶提問進行自動分類,正確率達95.9%,,與其他9種文本分類方法相比,,分類性能優(yōu)勢明顯。

    Abstract:

    With the rapid development of mobile internet, short text data of APPs has exploded. In the field of agriculture, tens of thousands of questions about agricultural technology have been put forward in agro-technical extension community. Accurate classification is the basis of agricultural intelligent Q&A and the guarantee of precise information service. In order to improve the performance of data classification,,a short text classification method based on BiGRU_MulCNN model was proposed to overcome the limitations of the classification process, such as few vocabulary, sparse features, large amount of data, lots of noise and poor normalization. In the model, Jieba word segmentation tools and agricultural dictionary were selected to text segmentation, then TF-IDF algorithm was adopted to expand the text characteristic and weighted word vector according to the text of key vector, and bi-directional gated recurrent unit was applied to catch the context feature information, multi-convolutional neural networks was finally established to gain local multidimensional characteristics of text. Batch-normalization, Dropout, Global Average Pooling and Global Max Pooling were involved to solve over-fitting problem. The results showed that the model could classify questions accurately, with an accuracy of 95.9%. Compared with other models, such as CNN model, RNN model and CNN/RNN combinatorial model, BiGRU_MulCNN had obvious advantages in classification performance in intelligent agro-technical information service.

    參考文獻
    相似文獻
    引證文獻
引用本文

金寧,趙春江,吳華瑞,繆祎晟,李思,楊寶祝.基于BiGRU_MulCNN的農(nóng)業(yè)問答問句分類技術(shù)研究[J].農(nóng)業(yè)機械學(xué)報,2020,51(5):199-206. JIN Ning, ZHAO Chunjiang, WU Huarui, MIAO Yisheng, LI Si, YANG Baozhu. Classification Technology of Agricultural Questions Based on BiGRU_MulCNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(5):199-206.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-08-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-05-10
  • 出版日期:
文章二維碼