ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于YOLO v3與圖結(jié)構(gòu)模型的群養(yǎng)豬只頭尾辨別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金青年基金項(xiàng)目(61503187)和國(guó)家重點(diǎn)研發(fā)計(jì)劃-中歐政府間合作項(xiàng)目(2017YFE0114400)


Head and Tail Identification Method for Group-housed Pigs Based on YOLO v3 and Pictorial Structure Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在利用視頻監(jiān)控技術(shù)對(duì)群養(yǎng)豬只進(jìn)行自動(dòng)行為監(jiān)測(cè)時(shí),,對(duì)豬只準(zhǔn)確定位并辨別其頭尾位置對(duì)提高監(jiān)測(cè)水平至關(guān)重要,,基于此提出一種基于YOLO v3(You only look once v3)模型與圖結(jié)構(gòu)模型(Pictorial structure models)的豬只頭尾辨別方法。首先,,利用基于深度卷積神經(jīng)網(wǎng)絡(luò)的YOLO v3目標(biāo)檢測(cè)模型,,訓(xùn)練豬只整體及其頭部和尾部3類目標(biāo)的檢測(cè)器,從而在輸入圖像中獲得豬只整體及頭尾部所有的檢測(cè)結(jié)果,;然后,,引入圖結(jié)構(gòu)模型,描述豬只的頭尾結(jié)構(gòu)特征,對(duì)每個(gè)豬只整體檢測(cè)矩形框內(nèi)的頭尾部位組合計(jì)算匹配得分,,選擇最優(yōu)的部位組合方式,;對(duì)部分部位漏檢的情況,采取閾值分割與前景橢圓擬合的方法,,根據(jù)橢圓長(zhǎng)軸推理出缺失部位,。在實(shí)際豬場(chǎng)環(huán)境下,通過(guò)俯拍獲得豬舍監(jiān)控視頻,,建立了圖像數(shù)據(jù)集,,并進(jìn)行了檢測(cè)實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明,,與直接利用YOLO v3模型相比,,本文方法對(duì)頭尾定位的精確率和召回率均有一定提高。本文方法對(duì)豬只頭尾辨別精確率達(dá)到96.22%,,與其他方法相比具有明顯優(yōu)勢(shì),。

    Abstract:

    For automatic behavior monitoring of group-housed pigs in video surveillance, pig head/tail identification has important significance to improve the level of behavior recognition. A head-tail recognition algorithm was proposed based on YOLO v3 (You only look once v3) and pictorial structure models. Firstly, the object detectors of three categories, i.e., pigs, heads and tails, were trained with YOLO v3, which was a general object detection model based on deep convolutional neural networks. In this way, bounding boxes of pigs, heads and tails can be detected from the input image. Next, pictorial structure models were introduced to describe structural characteristics of heads and tails for pigs. For each detected bounding box of pigs, scores of all possible head-tail combinations were computed with the established pictorial structure model to choose the optimal part configuration. When a head or tail was missed in the pig bounding box, a part inference method based on threshold segmentation was utilized to estimate the missing part according to the major axis of the fitted ellipse. In experiments, an image dataset was constructed from a top-view surveillance video of group-housed pigs. Experimental results demonstrated that via the proposed method, the precision and recall of part localization were improved compared with results of YOLO v3. Moreover, the head/tail identification accuracy reached 9622%, which obviously outperformed other methods based on intersection of bounding boxes and generalized Hough clustering. As a result, the proposed method can effectively detect pigs and distinguish their heads/tails in images of group-housed pigs without excessive limitations on environments.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李泊,沈明霞,劉龍申,陸明洲,孫玉文.基于YOLO v3與圖結(jié)構(gòu)模型的群養(yǎng)豬只頭尾辨別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(7):44-51. LI Bo, SHEN Mingxia, LIU Longshen, LU Mingzhou, SUN Yuwen. Head and Tail Identification Method for Group-housed Pigs Based on YOLO v3 and Pictorial Structure Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(7):44-51.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-09-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-07-10
  • 出版日期:
文章二維碼