ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于隨機(jī)森林的高寒濕地地區(qū)土地覆蓋遙感分類方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0504801)、國家自然科學(xué)基金項(xiàng)目(31672484),、現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金項(xiàng)目(CSRS-34),、中國工程院重點(diǎn)咨詢項(xiàng)目(2020-X2-29)、長江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃項(xiàng)目(IRT_17R50)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(lzujbky-2020-kb29)


Land Cover Remote Sensing Classification Method of Alpine Wetland Region Based on Random Forest Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    高寒濕地是青藏高原典型獨(dú)特的生態(tài)系統(tǒng),,是全球氣候變化的敏感地帶和預(yù)警區(qū),。利用遙感技術(shù)快速、準(zhǔn)確地分類提取高寒濕地的土地覆蓋信息,,對當(dāng)?shù)厣鷳B(tài)安全監(jiān)測和保護(hù)具有重要意義,。本文以若爾蓋濕地國家級(jí)自然保護(hù)區(qū)為研究區(qū),首先,,以高分一號(hào)(GF-1)遙感影像為數(shù)據(jù)源,,融合光譜特征,、水體指數(shù),、地形特征、植被指數(shù)和紋理信息等26個(gè)變量進(jìn)行隨機(jī)森林(Random forest, RF)分類實(shí)驗(yàn),;然后,,根據(jù)袋外數(shù)據(jù)(Out of bag, OOB)的特征變量重要性得分和精度評(píng)價(jià)結(jié)果,選出高寒濕地地區(qū)土地覆蓋類型的最優(yōu)分類方案和特征,;最后,,對特征變量進(jìn)行降維,并基于相同的變量,,采用極大似然法(Maximum likelihood classification, MLC),、支持向量機(jī)(Support vector machine, SVM)、人工神經(jīng)網(wǎng)絡(luò)(Artificial neural network, ANN)和RF等方法進(jìn)行分類,,比較不同方法的優(yōu)適性,。結(jié)果表明:結(jié)合GF-1影像光譜、水體,、植被,、紋理特征和地形信息,使用26個(gè)變量的RF模型的分類精度最高,,總體精度(Overall accuracy, OA)為90.07%,,Kappa系數(shù)為0.86;通過RF模型的變量重要性分析可以有效選出重要的特征信息,,在降低特征變量維度的同時(shí),,還能保證較高的分類精度;4種分類方法中,,RF算法是高寒濕地地區(qū)較合適的分類方法,,OA比MLC基準(zhǔn)方法高17.63個(gè)百分點(diǎn),比SVM和ANN等機(jī)器學(xué)習(xí)算法分別高6.98,、6.56個(gè)百分點(diǎn),。

    Abstract:

    Alpine wetland is a typical and unique ecosystem in the Qinghai-Tibet Plateau, which is considered as a sensitive zone and early warning area of global climate change. Using remote sensing technology to extract land cover information of alpine wetland more quickly and accurately is of great significance to the monitoring and protection of local ecological security. Firstly, taking Zoige Wetland National Nature Reserve as the study area and GF-1 remote sensing image as the data source, the random forest (RF) classification experiments were carried out based on 26 variables, including spectral characteristics, water index, topography feature, vegetation index and texture information. Then, through the out of bag (OOB) feature variable importance score and accuracy evaluation results, the optimal classification scheme and characteristics of land cover types in the alpine wetland region were selected. Finally, the feature variables were dimensionally reduced, and based on the same variables, the maximum likelihood classification (MLC), support vector machine (SVM), artificial neural network (ANN) and RF were used to classify, and the applicability of different methods was compared. The results showed that combining with the spectral characteristics, water and vegetation index, texture feature of GF-1 image and topography information, the RF model with 26 variables reached the highest classification accuracy, the overall accuracy (OA) was 90.07%, and the Kappa coefficient was 0.86. Using the variable importance analysis of RF model, important feature information could be effectively selected. Based on the importance analysis of RF model, the important feature information can be effectively selected, the dimension of feature variables can be reduced, and high classification accuracy was ensured. Among the four classification methods, RF algorithm was the most ideal one at present, OA was 17.63 percentage points higher than that of MLC, and 6.98 percentage points and 6.56 percentage points higher than those of SVM and ANN respectively. The RF classification method combined with multiple remote sensing information and feature selection can quickly and efficiently classify the land cover types of alpine wetland region, providing a quick and feasible technical means for the monitoring of local alpine wetland.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

侯蒙京,殷建鵬,葛靜,李元春,馮琦勝,梁天剛.基于隨機(jī)森林的高寒濕地地區(qū)土地覆蓋遙感分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(7):220-227. HOU Mengjing, YIN Jianpeng, GE Jing, LI Yuanchun, FENG Qisheng, LIANG Tiangang. Land Cover Remote Sensing Classification Method of Alpine Wetland Region Based on Random Forest Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(7):220-227.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-10-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-07-10
  • 出版日期:
文章二維碼