ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于環(huán)境溫度模型庫分段式加權(quán)的數(shù)控機床熱誤差建模
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家科技重大專項(2017ZX04021001-005-001)和中國博士后科學基金項目(2018M643626)


Piecewise Weighted Thermal Error Modeling of CNC Machine Tools Based on Model Library of Ambient Temperature
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對環(huán)境溫度變化較大時常用的熱誤差模型預(yù)測精度低的問題,,提出了一種基于環(huán)境溫度的模型庫分段式加權(quán)的熱誤差建模方法,以UPM120型數(shù)控銑床為實驗對象,,通過跨季度的7批次數(shù)據(jù),,完成了環(huán)境溫度15~35℃的分段式加權(quán)模型建模和預(yù)測精度分析。結(jié)果表明,,環(huán)境溫度變化在5℃以內(nèi)時,,多元線性回歸模型的預(yù)測精度優(yōu)于BP神經(jīng)網(wǎng)絡(luò)模型,、分布滯后模型、灰色理論模型和支持向量機模型,,可以將其作為分段式加權(quán)模型庫中的基礎(chǔ)模型,。當環(huán)境溫度變化較小時,基于多元線性回歸的分段式加權(quán)模型預(yù)測精度為1.39μm;當環(huán)境溫度變化較大時,,其預(yù)測精度為1.51μm,,均遠高于單一環(huán)境溫度樣本的回歸模型、多環(huán)境溫度樣本的回歸模型和泛化能力強的支持向量機模型的預(yù)測精度,。

    Abstract:

    Aiming at the problem that the common thermal error models have low prediction accuracy when the ambient temperature changes greatly, a piecewise weighted modeling method of thermal error based on model library of ambient temperature was proposed. The UPM120 CNC milling machine was used as the experimental object. Modeling and prediction accuracy analysis of the piecewise weighted model with ambient temperature between 15℃ and 35℃ were accomplished by using seven batches of data in different quarters. The experimental results showed that when the ambient temperature was varied within 5℃, the prediction accuracy of multiple linear regression model was better than that of BP neural network model, distributed lag model, grey theory model and support vector machine model, so multiple linear regression model was used as the basic model of the piecewise weighted model library. When the ambient temperature had small change, the piecewise weighted model based on multiple linear regression had a prediction accuracy of 1.39μm, which was slightly lower than that of the multiple linear regression model, but higher than that of the other four common thermal error models. When the ambient temperature had great change, the prediction accuracy was 1.51μm, which was much higher than the accuracy of multiple linear regression model of single ambient temperature sample, multiple linear regression model of multienvironment temperature samples and support vector machine model with strong generalization ability. The piecewise weighted model had high prediction accuracy under both large or small changes in ambient temperature.

    參考文獻
    相似文獻
    引證文獻
引用本文

李兵,蘇文超,魏翔,白金峰,蔣莊德.基于環(huán)境溫度模型庫分段式加權(quán)的數(shù)控機床熱誤差建模[J].農(nóng)業(yè)機械學報,2020,51(7):413-419. LI Bing, SU Wenchao, WEI Xiang, BAI Jinfeng, JIANG Zhuangde. Piecewise Weighted Thermal Error Modeling of CNC Machine Tools Based on Model Library of Ambient Temperature[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(7):413-419.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-11-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-07-10
  • 出版日期:
文章二維碼