ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于雙目相機(jī)與改進(jìn)YOLOv3算法的果園行人檢測(cè)與定位
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2018372)、江蘇省自然科學(xué)基金項(xiàng)目(BK20181443),、江蘇高校青藍(lán)工程項(xiàng)目,、鎮(zhèn)江市重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(NY2018001)和江蘇省三新工程項(xiàng)目(NJ2018-12)


Orchard Pedestrian Detection and Location Based on Binocular Camera and Improved YOLOv3 Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)復(fù)雜果園環(huán)境中行人難以精確檢測(cè)并定位的問(wèn)題,提出了一種雙目相機(jī)結(jié)合改進(jìn)YOLOv3目標(biāo)檢測(cè)算法的行人障礙物檢測(cè)和定位方法,。該方法采用ZED雙目相機(jī)采集左右視圖,通過(guò)視差原理獲取圖像像素點(diǎn)的距離信息,;將雙目相機(jī)一側(cè)的RGB圖像作為用樹(shù)形特征融合模塊改進(jìn)的YOLOv3算法的輸入,,得到行人障礙物在圖像中的位置信息,,結(jié)合雙目相機(jī)獲得的像素位置信息計(jì)算出相對(duì)于相機(jī)的三維坐標(biāo)。用卡耐基梅隆大學(xué)國(guó)家機(jī)器人工程中心開(kāi)放的果園行人檢測(cè)數(shù)據(jù)集測(cè)試改進(jìn)的YOLOv3算法,,結(jié)果表明,,準(zhǔn)確率和召回率分別達(dá)到95.34%和91.52%,高于原模型的94.86%和90.19%,,檢測(cè)速度達(dá)到30.26f/ms,。行人檢測(cè)與定位試驗(yàn)表明,行人障礙物的定位在深度距離方向平均相對(duì)誤差為1.65%,,最大相對(duì)誤差為3.80%,。該方法具有快速性和準(zhǔn)確性,可以較好地實(shí)現(xiàn)果園環(huán)境中的行人檢測(cè)與定位,,為無(wú)人駕駛農(nóng)機(jī)的避障決策提供依據(jù),。

    Abstract:

    The accurate identification and location of obstacles in agriculturalenvironment is one of the most important technologies for intelligent agricultural machinery. Aiming at the problem that pedestrians are difficult to detect and locate accurately in the complex orchard environment, a method of pedestrian obstacle detection and location based on binocular camera and improved YOLOv3 target detection algorithm was proposed. In this method, the left and right views were collected by zed binocular camera, and the distance information of image pixels was calculated based on parallax principle. One side of the RGB image was used as the input of the improved YOLOv3 algorithm which by introduced the tree feature fusion module, and the position information of pedestrian obstacles in the image was obtained. And then the three-dimensional coordinates relative to the camera were calculated based on the pixel position information obtained by the binocular camera. Experiment carried on the open pedestrian detection dataset in orchard environment of the National Robotics Engineering Center of Carnegie Mellon University which contained different motion states (motion and static), different pose states (normal and unnormal) and different object scales (large, medium and small). Results showed that the average precision and recall rate of the improved YOLOv3 pedestrian detection model in agriculture reached 95.34% and 91.52%, respectively, which were higher than that of the original model (94.86% and 90.19%), and the detection speed was 30.26f/ms. Meanwhile, the positioning accuracy of pedestrian obstacles was 1.65% in Z direction, and 3.80% in maximum. This method can locate pedestrian accurately and fast, providing reliable information for the obstacle avoidance of the unmanned agriculture machinery.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

景亮,王瑞,劉慧,沈躍.基于雙目相機(jī)與改進(jìn)YOLOv3算法的果園行人檢測(cè)與定位[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(9):34-39,25. JING Liang, WANG Rui, LIU Hui, SHEN Yue. Orchard Pedestrian Detection and Location Based on Binocular Camera and Improved YOLOv3 Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(9):34-39,,25.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-01-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-09-10
  • 出版日期:
文章二維碼