ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于RANSAC算法的植保機(jī)器人導(dǎo)航路徑檢測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

山東省重大科技創(chuàng)新工程項(xiàng)目(2019JZZY020621,、2019JZZY020623)、山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019GNC106098)和國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0300606)


Navigation Path Detection of Plant Protection Robot Based on RANSAC Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)植保機(jī)器人精準(zhǔn)自主導(dǎo)航和提高路徑檢測的精度,、可靠性,,提出一種基于RANSAC算法的視覺導(dǎo)航路徑檢測方法。首先,,采用超綠灰度化法和最大類間方差法進(jìn)行圖像分割,;繼而結(jié)合形態(tài)學(xué)操作與動(dòng)態(tài)面積閾值濾波算法濾除干擾;最后,,在壟行的邊緣中,,根據(jù)均值法提取特征點(diǎn),采用RANSAC算法剔除離群點(diǎn)后由最小二乘法進(jìn)行直線擬合,,以提高導(dǎo)航路徑的檢測精度,。實(shí)驗(yàn)表明,,與Hough變換相比,本文壟行中心線檢測方法具有更高的檢測精度,,導(dǎo)航路徑的檢測率可達(dá)93.8%,,比未使用RANSAC算法提高了18.8個(gè)百分點(diǎn)。

    Abstract:

    Reliable and accurate visual detection of crop rows is prerequisite for implementing successful autonomous navigation for plant protection robots. A visual navigation path detection approach based on random sample consensus (RANSAC) algorithm was proposed. Firstly, the excess green (ExG) method and the maximum variance between classes were used to figure out gross target regions. Secondly, morphological operations and dynamic area threshold filtering strategy were employed to filter out the interferences. As outlier points significantly influenced the estimation accuracy, RANSAC algorithm was proposed to purify the inlier point sets. Finally, crop rows line features were modelled by least mean square techniques, which offered a degree of robustness in constructing global co-linear features in contrast to Hough transformation. To sufficiently verify the effectiveness of the idea, wheat, peanut, corn and film covered potato seedling images were used for evaluation. As revealed by experimental results that the proposed method outperformed Hough transformation in the crop rows center line extraction, and RANSAC algorithm rendered the method more robust with respect to noise and outliers, which allowed the successful detection rate of the work to be improved by 18.8 percentage points and arrived at 93.8%. The overall framework made sense to reliable visual navigation for plant protection robots.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李秀智,彭小彬,方會(huì)敏,牛萌萌,康建明,薦世春.基于RANSAC算法的植保機(jī)器人導(dǎo)航路徑檢測[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(9):40-46. LI Xiuzhi, PENG Xiaobin, FANG Huimin, NIU Mengmeng, KANG Jianming, JIAN Shichun. Navigation Path Detection of Plant Protection Robot Based on RANSAC Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(9):40-46.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-05-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-09-10
  • 出版日期:
文章二維碼