ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于可變形全卷積神經(jīng)網(wǎng)絡(luò)的冬小麥自動(dòng)解譯研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

河北省青年科學(xué)基金項(xiàng)目(D2018409029),、河北省高等學(xué)??茖W(xué)技術(shù)研究青年拔尖人才項(xiàng)目(BJ2020056)、河北省高等學(xué)??茖W(xué)技術(shù)研究重點(diǎn)項(xiàng)目(ZD2016126),、高分專(zhuān)項(xiàng)省(自治區(qū))域產(chǎn)業(yè)化應(yīng)用項(xiàng)目(67-Y20A07-9002-15/18)和河北省研究生創(chuàng)新項(xiàng)目(CXZZSS2019156)


Automatic Interpretation of Winter Wheat Based on Deformable Full Convolution Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    以高分二號(hào)遙感影像為研究對(duì)象進(jìn)行冬小麥多元特征的提取,,在U-Net模型基礎(chǔ)上進(jìn)行改進(jìn),,將一種可變形全卷積神經(jīng)網(wǎng)絡(luò)(DFCNN)模型引入到遙感影像自動(dòng)解譯領(lǐng)域。為提高網(wǎng)絡(luò)模型對(duì)幾何變化特征的提取能力,,引入可變形卷積的思想,,將可訓(xùn)練的二維偏移量加入到網(wǎng)絡(luò)中的每個(gè)卷積層前,使卷積產(chǎn)生形變,,并獲得對(duì)象級(jí)語(yǔ)義信息,,從而增強(qiáng)了模型對(duì)不同尺寸及空間分布的冬小麥特征的表達(dá)。使用DFCNN模型對(duì)數(shù)據(jù)集進(jìn)行訓(xùn)練及微調(diào),,得到最優(yōu)的網(wǎng)絡(luò)模型,,其像素精度為98.1%,解譯時(shí)間為0.630s,。采用FCNN模型,、U-Net模型及RF算法得到的冬小麥自動(dòng)解譯像素精度分別為89.3%、93.9%,、90.0%,,說(shuō)明基于DFCNN模型的冬小麥自動(dòng)解譯精度相對(duì)較高,且對(duì)復(fù)雜的幾何變化特征有較好的表達(dá),,具有較好的泛化能力,。

    Abstract:

    China is a big producer of winter wheat. Obtaining the growth and distribution of winter wheat in a timely and accurate manner can provide a strong basis for China’s agricultural policy and distribution of agricultural products. Complex geometric changes and foreign body phenomena in high-resolution remote sensing images limited the recognition ability of ground objects. The multivariate features of winter wheat were extracted from GF-2. Based on the U-Net model, a deformable full convolutional neural network (DFCNN) model was introduced into the field of automatic interpretation of remote sensing images. In order to improve the ability of the network model to extract geometric features, the idea of deformable convolution was introduced. A trainable two-dimensional offset was added to the front of each convolutional layer in the network to deform the convolution and obtain object-level semantic information. Thus, the expression of winter wheat features with different sizes and spatial distribution was enhanced, and the interference of foreign bodies in high-resolution remote sensing images was eliminated. A deformable convolution module was added to the improved full convolutional neural network model, and the data set was trained and fine-tuned to obtain the optimal network model with an accuracy rate of 98.1% and a time cost of 0.630s. Based on FCNN model, U-Net model and random forest (RF) algorithm, the accuracy of automatic interpretation was 89.3%, 93.9% and 90.0%, respectively. The results showed that the winter wheat based on DFCNN model had the highest accuracy. Moreover, it can express complex geometric change characteristics well and had good generalization ability.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李旭青,張秦雪,安志遠(yuǎn),金永濤,張秦浩,丁暉.基于可變形全卷積神經(jīng)網(wǎng)絡(luò)的冬小麥自動(dòng)解譯研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(9):144-151. LI Xuqing, ZHANG Qinxue, AN Zhiyuan, JIN Yongtao, ZHANG Qinhao, DING Hui. Automatic Interpretation of Winter Wheat Based on Deformable Full Convolution Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(9):144-151.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-12-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-09-10
  • 出版日期:
文章二維碼