ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于聯(lián)動擴展神經(jīng)網(wǎng)絡(luò)的水下自由活蟹檢測器研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(61903288),、江蘇省自然科學(xué)基金項目(BK20170536)、福建省自然科學(xué)基金項目(2018J01471),、常州市現(xiàn)代農(nóng)業(yè)科技項目(CE20192006)和江蘇省高校優(yōu)勢學(xué)科建設(shè)項目(PAPD)


Small-sized Efficient Detector for Underwater Freely Live Crabs Based on Compound Scaling Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用機器視覺技術(shù)檢測池塘水下自由活蟹的形態(tài)位置和數(shù)量分布信息,,是實現(xiàn)自動投餌船精準(zhǔn)變量投喂的關(guān)鍵。本文設(shè)計了一種基于聯(lián)動擴展卷積神經(jīng)網(wǎng)絡(luò)的實時輕量型水下活蟹檢測器,。首先,,針對水下圖像模糊和色彩不均的特點,以及稀疏分解后不同頻率圖像的信息組成特點,,分別進行K-SVD降噪和Retinex色彩校正,;然后,采用聯(lián)動擴展網(wǎng)絡(luò)寬度,、深度和分辨率方式來協(xié)調(diào)精度和效率的輕量級EfficientNet作為主干網(wǎng)絡(luò),;引入復(fù)合縮放因子,對堆疊兩層加權(quán)雙向特征金字塔結(jié)構(gòu)的高效融合特征網(wǎng)絡(luò)和堆疊三層卷積模塊的類別/邊界框預(yù)測網(wǎng)絡(luò)進行全局聯(lián)動擴展,,以構(gòu)建適用于有限資源的小型活蟹檢測器,;最后,在類別/邊界框預(yù)測網(wǎng)絡(luò)中利用正交Softmax層替代完全連接的分類層,,確保檢測器可從小樣本數(shù)據(jù)中學(xué)習(xí)更多的區(qū)分特征,,有效緩解小樣本檢測的過擬合問題。采用自建的20625幅數(shù)據(jù)樣本對檢測模型進行訓(xùn)練和測試,,實驗表明,,降噪、校正后的圖像顏色均衡,,且清晰度高,,檢測的平均交并比Iou提高近8個百分點。檢測模型EfficientNet-Det0存儲內(nèi)存僅需15MB,,便可實現(xiàn)查準(zhǔn)率96.21%和查全率94.86%,,單幅圖像檢測延遲分別為10.6ms(GPU)和35.0ms(CPU),。浮點運算次數(shù)FLOPs減少至YOLOv3算法的1/15,CPU運行速度是其3倍,,而準(zhǔn)確性與YOLOv3算法相當(dāng),,甚至略優(yōu)。EfficientNet-Det0搭載在資源受限的自動投餌船上能夠快速精準(zhǔn)檢測水下河蟹,,并能實現(xiàn)對池塘自由活蟹分布的統(tǒng)計,,為建立科學(xué)的投喂機制提供可靠的決策信息。

    Abstract:

    Using machine vision technology to detect the morphological position and quantity distribution information of underwater freely live crabs in the pond is a key step to realize the precise variable feeding for automatic feeding boats. However, it is very challenging to detect crabs quickly and reliably in the underwater images because of the large differences in posture, similarity joints of crabs, and the uneven color characteristics of the underwater images. For this reason, a real-time lightweight underwater live crab detector based on compound scaling convolutional neural networks was proposed. Firstly, aiming to the characteristics of underwater image blur and color imbalance, K-SVD denoising and Retinex color-correction enhancement were performed respectively according to the information composition characteristics with different frequencies after sparse decomposition. Secondly, a lightweight EfficientNet that perfectly coordinated the accuracy and efficiency by compound scaling the network width, depth and resolution was adopted as the backbone network. After that, a compound scaling factor was introduced to perform global overall compound scaling of the efficiently integrated feature network, which stacked two-layer weighted bi-directional feature pyramid structures, and the class/boundary-box prediction network that stacked three-layer convolution modules, to build a small-sized efficient detector for limited resources. In the class/boundary-box prediction network, an orthogonal Softmax layer was also adopted to replace the fully-connected classification layer to ensure that the detector can learn more distinguishing features from the small-sample dataset, which effectively alleviated the over-fitting problem of small-sample detection and improved the generalization ability of detectors. The model was trained and tested with self-built 20625 data samples. Experiments showed that images after denoising and correction were color-balanced and high-definition, and the detection Iou was increased by nearly 8 percentage points. The training detection model EfficientNet-Det0 can achieve 9621% precision and 9486% recall rate where only 15MB storage memory was needed;the detection delay of a single image was only 10.6ms (GPU) and 35.0ms (CPU). Compared with the YOLOv3 algorithm, FLOPs was reduced to 1/15, and operating speed of CPU was increased by 2 times, yet the accuracy was comparable to or even better than YOLOv3. The EfficientNet-Det0 proposed was suitable for applying on resource-restricted automatic feeding bait to quickly and accurately detect underwater live crabs, which could realize the statistics of the distribution for freely live crabs in ponds, and provide reliable decision information for establishing scientific feeding mechanism.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙德安,曹碩,孫月平,戚浩,阮承治.基于聯(lián)動擴展神經(jīng)網(wǎng)絡(luò)的水下自由活蟹檢測器研究[J].農(nóng)業(yè)機械學(xué)報,2020,51(9):163-174. ZHAO Dean, CAO Shuo, SUN Yueping, QI Hao, RUAN Chengzhi. Small-sized Efficient Detector for Underwater Freely Live Crabs Based on Compound Scaling Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(9):163-174.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-05-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-09-10
  • 出版日期:
文章二維碼