ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

蝗蟲切片圖像Shannon-Cosine小波精細(xì)積分混合降噪
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

北京市自然科學(xué)基金項(xiàng)目(4172034)和國(guó)家自然科學(xué)基金面上項(xiàng)目(61871380)


Shannon-Cosine Wavelet Precise Integration Denoising Method for Locust Slice Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在顯微鏡下采集到的蝗蟲切片圖像通常同時(shí)具有高斯噪聲和椒鹽噪聲。利用同時(shí)具有插值性,、光滑性、緊支撐性及歸一化特性的Shannon-Cosine小波,構(gòu)造了多尺度插值小波算子,,進(jìn)而構(gòu)造了去除圖像中混合噪聲的小波精細(xì)積分法。該方法在稀疏描述切片圖像時(shí),,通過設(shè)置稀疏表示閾值,,直接消除圖像中的椒鹽噪聲,;將圖像的Shannon-Cosine小波稀疏表達(dá)式直接代入圖像降噪P-M模型,將該模型變形為非線性常微分方程組,,采用精細(xì)積分法求解,,可實(shí)現(xiàn)圖像的保邊降噪,消除圖像中的高斯噪聲,。實(shí)驗(yàn)結(jié)果表明,,在滿足降噪要求的情況下,本文方法可以較好地保持蝗蟲切片圖像中的各種紋理結(jié)構(gòu);隨著高斯噪聲方差由0.02增加到0.10,,降噪圖像的PSNR下降了11.67%,,遠(yuǎn)低于其他方法。說明本文方法在處理蝗蟲切片圖像時(shí)具有較強(qiáng)的魯棒性,。采用本文方法描述蝗蟲切片圖像時(shí),,特征像素點(diǎn)只占圖像像素總數(shù)的10%左右,有效降低了問題規(guī)模,,提高了求解效率,。

    Abstract:

    Micro-slice images collected under a microscope usually have both Gaussian noise and pepper and salt noise. Shannon-Cosine wavelet with interpolation, smoothness, compact support and normalization characteristics was used to construct multi-scale interpolation wavelet operators, and then a wavelet precise integration method for removing mixed noise in images was constructed. And the pepper and salt noise in the micro-slice image was directly eliminated by setting the sparse representation threshold;Shannon-Cosine wavelet sparse expressions of images were brought directly into the image noise reduction P-M model, and then this model was transformed into a system of nonlinear ordinary differential equations and solved it directly by using the precise integration method, which can achieve edge preservation and noise reduction, and eliminate Gaussian noise in the image. The experimental results showed that the proposed method can preserve various texture structures in locust slice images under the condition of satisfying the requirements of noise reduction. As the variance of Gaussian noise was increased from 0.02 to 0.10, the PSNR value of the denoised image was decreased by 11.67%, which was much lower than that of the other methods. This showed that the method proposed had strong robustness when processing locust slice images. When the image Shannon-Cosine wavelet sparse representation method proposed was used to describe the locust slice image, the number of characteristic pixels only accounted for about 10% of the total number of image pixels, which effectively reduced the scale of the problem and improved the solution efficiency.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李麗,朱磊平,梅樹立.蝗蟲切片圖像Shannon-Cosine小波精細(xì)積分混合降噪[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(9):186-192. LI Li, ZHU Leiping, MEI Shuli. Shannon-Cosine Wavelet Precise Integration Denoising Method for Locust Slice Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(9):186-192.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-12-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-09-10
  • 出版日期:
文章二維碼