ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于圖像處理和GBRT模型的表土層土壤容重預測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金青年基金項目(31801265)


Prediction of Top Soil Layer Bulk Density Based on Image Processing and Gradient Boosting Regression Tree Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統(tǒng)的表土層土壤容重測量方法費時,、耗力的問題,,利用易獲得的土壤物理參數(shù)實現(xiàn)農(nóng)田大范圍表土層土壤容重的快速、準確預測,。通過分析表土層土壤容重與土壤表面粗糙度,、土壤阻力的關系,構(gòu)建了以土壤表面粗糙度和土壤阻力為輸入的GBRT模型,,土壤表面粗糙度利用圖像處理技術(shù)獲得,,土壤阻力使用實驗室車載式阻力測量系統(tǒng)獲得。使用同態(tài)濾波技術(shù)對土壤表面圖像進行預處理,,提取圖像灰度直方圖的熵,、平均值,、方差、偏度和峰度表征圖像的紋理特征參數(shù),,提取圖像灰度共生矩陣的能量,、熵、對比度和逆方差表征圖像的區(qū)域特征參數(shù),。利用灰度關聯(lián)分析,,從9個表征土壤表面粗糙度的特征參數(shù)和土壤阻力中選取與表土層土壤容重關聯(lián)度大于065的變量作為模型輸入,將得到的GBRT模型預測結(jié)果與環(huán)刀法得到的結(jié)果進行相關性分析,,R2達到0.8782,,平均絕對誤差達到0.021g/cm3。同時在相同的輸入?yún)?shù)和運算環(huán)境下,,與BPNN和SVR模型的預測精度和運算速度進行了對比,,驗證得到GBRT模型具有更高的預測精度和更短的運算時間。本文研究結(jié)果為科學指導農(nóng)田表土層土壤容重的獲取提供了思路,。

    Abstract:

    Aiming at the time-consuming and labor-intensive problem of traditional soil bulk density measurement of topsoil, using easily available soil physical parameters to accurately and quickly predict the bulk density of topsoil in farmland. By analyzing the relationship between soil bulk density of topsoil layer and surface roughness and resistance of soil, a gradient boosting regression tree (GBRT) model with input of surface roughness and resistance of soil was constructed. The roughness of soil surface was obtained using image processing techniques. Using homomorphic filtering technology to preprocess the surface image of soil, extract the entropy, average, variance, skewness and kurtosis of the image gray histogram to characterize the texture feature parameters of image, extract the energy, entropy, contrast and inverse variance characterize the regional characteristic parameters of the image. The soil resistance was obtained using a laboratory vehicle-mounted resistance measurement system. Using gray correlation analysis, from nine characteristic parameters that characterizing the roughness of soil surface and soil resistance, the variables with bulk density of topsoil greater than 0.65 were selected as the model input. The prediction results of the GBRT model were the same as those obtained by the ring knife method. As a result of correlation analysis, the determination coefficient R2 reached 0.8782, and the average absolute error reached 0.021g/cm3. At the same time, under the same input parameters and computing environment, compared with the prediction accuracy and operation speed of the BPNN and SVR models, it was verified that the GBRT model had better prediction accuracy and shorter operation time. The research results can provide ideas for obtaining the bulk density of topsoil and provide theoretical support for scientific and rapid guidance of farmland.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊瑋,蘭紅,李民贊,孟超.基于圖像處理和GBRT模型的表土層土壤容重預測[J].農(nóng)業(yè)機械學報,2020,51(9):193-200. YANG Wei, LAN Hong, LI Minzan, MENG Chao. Prediction of Top Soil Layer Bulk Density Based on Image Processing and Gradient Boosting Regression Tree Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(9):193-200.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-05-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-09-10
  • 出版日期:
文章二維碼