ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于CNN-GRU的菇房多點(diǎn)溫濕度預(yù)測(cè)方法研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

農(nóng)業(yè)農(nóng)村部崗位科學(xué)家項(xiàng)目 (CARS-20),、北京市百千萬(wàn)人才工程項(xiàng)目(2018A33)和北京市農(nóng)林科學(xué)院科研創(chuàng)新平臺(tái)建設(shè)項(xiàng)目


Multi-point Prediction of Temperature and Humidity of Mushroom Based on CNN-GRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    有效獲取溫室出菇房的溫濕度空間分布對(duì)于優(yōu)化食用菌環(huán)境脅迫、病害預(yù)警,、出菇房預(yù)調(diào)控至關(guān)重要,,但傳統(tǒng)的單點(diǎn)預(yù)測(cè)不能很好地滿足菇房整體環(huán)境性能評(píng)估的需求。針對(duì)出菇房?jī)?nèi)溫濕度時(shí)序性,、非線性,、空間分布差異性的特點(diǎn),提出一種基于卷積神經(jīng)網(wǎng)絡(luò)(CNN)與門控循環(huán)單元神經(jīng)網(wǎng)絡(luò)(GRU)相結(jié)合的菇房多點(diǎn)溫濕度預(yù)測(cè)方法,。將溫室室外歷史氣象數(shù)據(jù),、溫室室內(nèi)歷史小氣候環(huán)境數(shù)據(jù)、多點(diǎn)環(huán)境分布特征,、通風(fēng)信息和加濕信息多特征數(shù)據(jù)按照時(shí)間序列構(gòu)造二維矩陣作為輸入,,采用CNN挖掘數(shù)據(jù)中蘊(yùn)含的有效信息,提取反映溫室環(huán)境數(shù)據(jù)相互聯(lián)系的高維特征,,將提取的特征向量構(gòu)造為時(shí)間序列輸入GRU網(wǎng)絡(luò)進(jìn)行多點(diǎn)溫濕度預(yù)測(cè),。將該預(yù)測(cè)方法應(yīng)用于北京市農(nóng)林科學(xué)院的日光溫室出菇房?jī)?nèi)多點(diǎn)溫濕度預(yù)測(cè),實(shí)驗(yàn)結(jié)果表明,,該預(yù)測(cè)方法對(duì)于出菇房?jī)?nèi)各點(diǎn)溫度RMSE平均值為0.211℃,,MAE平均值為0.140℃,誤差控制在±0.5℃范圍內(nèi)的平均比例為97.57%;對(duì)于出菇房?jī)?nèi)各點(diǎn)相對(duì)濕度RMSE平均值為2.731%,,MAE平均值為1.713%,,誤差控制在±5%范圍內(nèi)的平均比例為92.62%;相比傳統(tǒng)的BP神經(jīng)網(wǎng)絡(luò),、長(zhǎng)短期記憶神經(jīng)網(wǎng)絡(luò)(LSTM)和門控循環(huán)單元神經(jīng)網(wǎng)絡(luò)(GRU),該預(yù)測(cè)方法具有更高的預(yù)測(cè)精度,。

    Abstract:

    It was vitally important to effectively obtain the spatial distribution of temperature and humidity of the greenhouse mushroom house in advance for optimizing environmental stress of edible fungi, early warning of disease and pre-regulation of the mushroom house. The traditional single-point prediction could not well meet the demand of evaluation of overall environmental performance for the mushroom house. According to the characteristics of time series, non-linear and different spatial distribution of temperature and humidity in mushroom house, a multi-point prediction method of temperature and humidity for the mushroom house based on convolutional neural network (CNN) and gated recurrent unit neural network (GRU) was proposed, which took the historical outdoor meteorological data of the greenhouse, the indoor microclimate environmental data, environmental distribution characteristics, the ventilation information and the humidification information as input by constructing a two-dimensional matrix according to the time series. Firstly, CNN was used to mine the effective information contained in the data to extract the high-dimensional features reflecting the interrelation of greenhouse environmental data, and then the extracted feature vectors were constructed as time series and input to the GRU network for multi-point prediction of temperature and humidity. The prediction model proposed was applied to the multi-point prediction of temperature and humidity in the mushroom house of a solar greenhouse in Beijing Academy of Agricultural and Forestry Sciences, and the experimental results showed that the averaged RMSE and MAE were 0.211℃ and 0.140℃, respectively, for the temperature prediction at each point in the mushroom house, and the average proportion of error control within ±0.5℃ was 97.57%. For the humidity prediction at each point in the mushroom house, the averaged RMSE and MAE were 2.731% and 1.713%, respectively, and the average proportion of error control within ±5% was 92.62%. Comparing with traditional BP neural network, long short-term memory neural network (LSTM), and gated recurrent unit neural network (GRU), the prediction model proposed had higher prediction accuracy.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙全明,宋子濤,李奇峰,鄭文剛,劉宇,張鐘莉莉.基于CNN-GRU的菇房多點(diǎn)溫濕度預(yù)測(cè)方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(9):294-303. ZHAO Quanming, SONG Zitao, LI Qifeng, ZHENG Wen’gang, LIU Yu, ZHANG Zhonglili. Multi-point Prediction of Temperature and Humidity of Mushroom Based on CNN-GRU[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(9):294-303.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-03-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-09-10
  • 出版日期:
文章二維碼