ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于神經(jīng)網(wǎng)絡(luò)整定的PID控制變量施藥系統(tǒng)設(shè)計(jì)與試驗(yàn)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD020080709、2018YFD0300105)


Design and Experiment of PID Control Variable Application System Based on Neural Network Tuning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)常規(guī)的大田噴霧裝備的定量施藥方式,,在機(jī)具行進(jìn)方向上農(nóng)藥霧滴分布不均導(dǎo)致農(nóng)藥有效利用率低的問題,,設(shè)計(jì)了一種基于神經(jīng)網(wǎng)絡(luò)整定的PID控制變量施藥系統(tǒng)。該系統(tǒng)采用多傳感器實(shí)時(shí)監(jiān)測(cè)車速,、流量,、壓力等信息,并以此作為控制依據(jù),,運(yùn)用神經(jīng)網(wǎng)絡(luò)自學(xué)習(xí)能力修正PID參數(shù),,精準(zhǔn)調(diào)控藥液回流量,解決了現(xiàn)有變量施藥控制算法存在的超調(diào)量較大,、穩(wěn)態(tài)誤差較大,、響應(yīng)時(shí)間較長等問題,實(shí)現(xiàn)了大田單位面積內(nèi)施藥量恒定的目標(biāo),。為驗(yàn)證本系統(tǒng)算法對(duì)精準(zhǔn)變量施藥的優(yōu)越性,,在Simulink平臺(tái)下對(duì)常規(guī)PID、模糊PID和神經(jīng)網(wǎng)絡(luò)PID控制方式進(jìn)行建模仿真,,結(jié)果表明,,神經(jīng)網(wǎng)絡(luò)PID控制在上升時(shí)間、超調(diào)量和穩(wěn)態(tài)誤差方面均優(yōu)于其他兩種控制方式,。田間試驗(yàn)表明,,在不同車速下,液滴沉積數(shù)量標(biāo)準(zhǔn)差均小于1.4個(gè)/cm2,;在不同施藥量,、車速隨意變化的情況下,,機(jī)具縱向均勻度變異系數(shù)均小于6%;車速在4~11km/h范圍內(nèi)隨機(jī)變化時(shí),,系統(tǒng)平均調(diào)節(jié)時(shí)間為0.72s,,平均超調(diào)量為2.1%,實(shí)際施藥量與理論值相差1.3%,。

    Abstract:

    Aiming at the situation of pesticide residues and less spraying under the conventional field quantitative spraying method, at the same time, in order to improve the timeliness of the existing variable spray control system and solve the lag of fuzzy decisionmaking, the BP neural network PID variable spray system was designed. Based on the multisensor realtime monitoring of speed, flow rate and pressure, the system used neural network selflearning ability to modify PID parameters toprecisely control the return flow of the liquid. It solved the technical problems such as large overshoot, large steadystate error and long response time in the existing variable application control algorithm, and realized the purpose of constant application amount per unit area in the field. In order to verify the superiority of the system algorithm in accurate variable application, the conventional PID, fuzzy PID and neural network control mode were modeled and simulated under the Simulink platform. Through comparison, it can be seen that the neural network PID control was superior to the other two control modes in terms of rising time, overshoot and steadystate error. The field experiment showed that the standard deviation of droplet deposition number was less than 1.4 per square centimetre, the coefficient of variation of longitudinal uniformity was less than 6%, and when the speed varied randomly in the range of 4~11km/h, the average adjustment time of the system was 0.72s, the average overshoot was 2.1%, and the difference between the dosage and the setting was 1.3%. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫文峰,劉海洋,王潤濤,付天鵬,呂金慶,王福林.基于神經(jīng)網(wǎng)絡(luò)整定的PID控制變量施藥系統(tǒng)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(12):55-64,;94. SUN Wenfeng, LIU Haiyang, WANG Runtao, FU Tianpeng, LV Jinqing, WANG Fulin. Design and Experiment of PID Control Variable Application System Based on Neural Network Tuning[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(12):55-64;94.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-08-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-12-10
  • 出版日期: 2020-12-10
文章二維碼