ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

復(fù)雜大田場(chǎng)景中麥穗檢測(cè)級(jí)聯(lián)網(wǎng)絡(luò)優(yōu)化方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300607)、江蘇省重點(diǎn)研發(fā)計(jì)劃(現(xiàn)代農(nóng)業(yè))重點(diǎn)項(xiàng)目(BE2019383)和中央高?;究蒲袠I(yè)務(wù)費(fèi)自主創(chuàng)新重點(diǎn)項(xiàng)目(KYZ201550,、KYZ201548)


Optimization Method for Cascade Network of Wheat Ear Detection in Complex Filed Scene
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    單位種植面積的麥穗數(shù)量是評(píng)估小麥產(chǎn)量的關(guān)鍵農(nóng)藝指標(biāo)之一。針對(duì)農(nóng)田復(fù)雜場(chǎng)景中存在的大量麥芒,、卷曲麥葉,、雜草等環(huán)境噪聲、小尺寸目標(biāo)和光照不均等導(dǎo)致的麥穗檢測(cè)準(zhǔn)確度下降的問(wèn)題,,提出了一種基于深度學(xué)習(xí)的麥穗檢測(cè)方法(FCS R-CNN),。以Cascade R-CNN為基本網(wǎng)絡(luò)模型,通過(guò)引入特征金字塔網(wǎng)絡(luò)(Feature pyramid network,,F(xiàn)PN)融合淺層細(xì)節(jié)特征和高層豐富語(yǔ)義特征,,通過(guò)采用在線難例挖掘(Online hard example mining, OHEM)技術(shù)增加對(duì)高損失樣本的訓(xùn)練頻次,通過(guò)IOU(Intersection over union)閾值對(duì)網(wǎng)絡(luò)模型進(jìn)行階段性融合,,最后基于圓形LBP紋理特征訓(xùn)練一個(gè)SVM分類(lèi)器,,對(duì)麥穗檢出結(jié)果進(jìn)行復(fù)驗(yàn),。大田圖像測(cè)試表明,F(xiàn)CS R-CNN模型的檢測(cè)精度達(dá)92.9%,,識(shí)別單幅圖像平均耗時(shí)為0.357s,,平均精度為81.22%,比Cascade R-CNN提高了21.76個(gè)百分點(diǎn),。

    Abstract:

    The number of wheat ears per planting area is one of the key agronomic index to evaluate wheat yield. In the field scene, there are usually great differences in the shape, size and posture of wheat ears, and there are serious occlusion between leaves and ears and between ears and ears. At the same time, wheat awn, curly wheat leaves, weeds and uneven illumination introduced a lot of background interference. These complex factors led to a high false detection rate in traditional methods based on color and texture features. The detection method based on deep learning has a high missed detection rate for smallsize rice ear images in practical application. To solve these problems, a wheat ear detection method FCS R-CNN based on deep learning was proposed. Taking Cascade R-CNN as the basic network model, a feature pyramid network (FPN) was introduced to fuse shallow detailed features and highlevel rich semantic features, and online hard example mining (OHEM) technology was added to increase training frequency for highloss samples, the network was fused by the IOU threshold. Finally, a SVM classifier was trained based on the circular LBP texture features to carry out the reinspection of wheat ear detection results to further reduce the detection error. In the wheat field image test, the detection accuracy of FCS R-CNN model reached 92.9%, the average precision (AP) was 81.22%, the average time to identify a single image was 0.357s, and the AP was 21.76 percentage points higher than that of the original Cascade R-CNN. The results showed that the proposed method had better detection results for wheat ear detection in complex scenes, which provided a new idea for wheat yield estimation. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

謝元澄,何超,于增源,沈毅,姜海燕,梁敬東.復(fù)雜大田場(chǎng)景中麥穗檢測(cè)級(jí)聯(lián)網(wǎng)絡(luò)優(yōu)化方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(12):212-219. XIE Yuancheng, HE Chao, YU Zengyuan, SHEN Yi, JIANG Haiyan, LIANG Jingdong. Optimization Method for Cascade Network of Wheat Ear Detection in Complex Filed Scene[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(12):212-219.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-03-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-12-10
  • 出版日期: 2020-12-10
文章二維碼