ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于輕量卷積結(jié)合特征信息融合的玉米幼苗與雜草識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2017YFD00700400-2017YFD00700403),、天津市自然科學基金項目(18JCQNJC04500,、19JCQNJC01700)、天津市教委科研計劃項目(JWK1613)和天津職業(yè)技術(shù)師范大學校級預研項目(KJ2009,、KYQD1706)


Recognition of Maize Seedling and Weed Based on Light Weight Convolution and Feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對自然環(huán)境下作物與雜草識別精度低,、實時性和魯棒性差等問題,以幼苗期玉米及其伴生雜草為研究對象,,提出一種基于輕量卷積神經(jīng)網(wǎng)絡結(jié)合特征層信息融合機制的改進單步多框檢測器(Single shot multibox detector,,SSD)模型。首先,,采用深度可分離卷積結(jié)合壓縮與激勵網(wǎng)絡(Squeezeandexcitation networks,,SENet)模塊構(gòu)建輕量特征提取單元,在此基礎上通過密集化連接構(gòu)成輕量化前置基礎網(wǎng)絡,,替代標準SSD模型中的VGG16網(wǎng)絡,,以提高圖像特征提取速度;然后,,基于不同分類特征層融合機制,,將擴展網(wǎng)絡中深層語義信息與淺層細節(jié)信息進行融合,融合后的特征圖具有足夠的分辨率和更強的語義信息,,可以提高對小尺寸作物與雜草的檢測準確率,。試驗結(jié)果表明,本文提出的深度學習檢測模型對自然環(huán)境下玉米及其伴生雜草的平均精度均值為88.27%,、檢測速度為32.26f/s,、參數(shù)量為8.82×10.6,與標準SSD模型相比,,精度提高了2.66個百分點,,檢測速度提高了33.86%,參數(shù)量降低了66.21%,,同時對小尺寸目標以及作物與雜草葉片交疊情況的識別具有良好的魯棒性與泛化能力,。本文方法可為農(nóng)業(yè)自動化精準除草提供技術(shù)支持,。

    Abstract:

    The drawbacks of traditional crop and weed identification algorithms include low accuracy, poor realtime and weak robustness,resulting in weeding operations inefficient in the natural environment. In order to solve these problems,,corn and its associated weed were taken as research object,,and an improved single shot multibox detector (SSD)model was proposed. Firstly, a light weight feature extraction unit was constructed through the use of depth separable convolution and squeezeandexcitation networks (SENet)module. On this basis, a light weight basic network formed with dense connection was adopted to replace the VGG16 network of the standard SSD model, so as to improve the speed of image feature extraction. Based on the mechanisms of different classification feature layer fusion, the deep semantic information in extra feature layers was fused with shallow detail information. The fused feature map would have enough resolution and strong semantic information, which can improve the detection accuracy of smallscale crops and weeds. Experimental results showed that the mean average precision and recognition speed of the proposed model were 88.27% and 32.26f/s, respectively, and the parameters size was 8.82×10.6. Compared with that of standard SSD model, the identification accuracy and speed of this model were increased by 2.66 percentage points and 33.86%, respectively, and the parameters were decreased by 66.21%. In addition, the improved SSD model performed good robustness ability under the condition of smallscale targets and overlapping of crop and weed leaves. The proposed method could identify crop and weed accurately and rapidly, which provided a technical support for agricultural automatic precision weeding. 

    參考文獻
    相似文獻
    引證文獻
引用本文

孟慶寬,張漫,楊曉霞,劉易,張振儀.基于輕量卷積結(jié)合特征信息融合的玉米幼苗與雜草識別[J].農(nóng)業(yè)機械學報,2020,51(12):238-245;303. MENG Qingkuan, ZHANG Man, YANG Xiaoxia, LIU Yi, ZHANG Zhenyi. Recognition of Maize Seedling and Weed Based on Light Weight Convolution and Feature Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(12):238-245,;303.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-03-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-12-10
  • 出版日期: 2020-12-10
文章二維碼