ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于卷積膠囊網(wǎng)絡(luò)的百合病害識(shí)別研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31971785),、甘肅省自然科學(xué)基金項(xiàng)目(18JR3RA224)和甘肅省社科規(guī)劃項(xiàng)目(YB087)


Disease Detection of Lily Based on Convolutional Capsule Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了提高百合病害診斷模型的抗噪能力,以VGG-16模型為基礎(chǔ)構(gòu)建卷積膠囊網(wǎng)絡(luò),,并分析了膠囊尺寸、路由迭代次數(shù)對(duì)訓(xùn)練時(shí)間及模型精度的影響,。最終得到膠囊尺寸為8,、路由迭代次數(shù)為3的卷積膠囊網(wǎng)絡(luò),該網(wǎng)絡(luò)對(duì)百合病害診斷精度達(dá)到99.20%,。使用不同等級(jí)的高斯噪聲,、椒鹽噪聲、斑點(diǎn)噪聲,、仿射變換圖像對(duì)模型抗噪能力進(jìn)行測(cè)試,,結(jié)果表明,卷積膠囊網(wǎng)絡(luò)明顯優(yōu)于VGG-16模型,,更適合在實(shí)際生產(chǎn)環(huán)境下的百合病害診斷,。

    Abstract:

    Lanzhou lily is the only kind of sweet lily in China and it is one of the famous specialties of Gansu Province. However, its yield and quality were decreased significantly in recent years due to gray mold disease, bulb rot disease and other diseases and insect pests. In order to improve the antiinterference ability of Lanzhou lily diseases diagnosis model, the three full connection layers of VGG-16 convolutional network was replaced with capsule network module to construct convolutional capsule network. And the effects of capsule size and route iteration times on training time and model accuracy were analyzed systematically. The result of the experiment showed that the diagnosis accuracy of Lanzhou lily diseases via convolutional capsule network was 9920% when the capsule size was 8 and the route iteration time was 3. And the capsule size and the number of routing iterations had no significant effect on the accuracy of the model. In addition, the accuracy of VGG-16 model was slightly higher than that of convolutional capsule network when the affine transformation grade was 0.04~0.08. But the antiinterference ability of convolutional capsule network was obviously better than that of VGG-16 model for Gaussian noise, saltandpepper noise, speckle noise and other grades of affine transformation. So it was possible to use the convolutional capsule network for dealing with the realworld examples of Lanzhou lily diseases recognition. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

丁永軍,張晶晶,李民贊.基于卷積膠囊網(wǎng)絡(luò)的百合病害識(shí)別研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(12):246-251,;331. DING Yongjun, ZHANG Jingjing, LI Minzan. Disease Detection of Lily Based on Convolutional Capsule Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(12):246-251;331.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-07-21
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2020-12-10
  • 出版日期: 2020-12-10
文章二維碼