ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于Lab顏色空間的非監(jiān)督GMM水稻無人機(jī)圖像分割
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

遼寧省重點研發(fā)計劃項目(2020JH2/10200038)和國家重點研發(fā)計劃項目(2017YFD0300700)


Unsupervised GMM for Rice Segmentation with UAV Images Based on Lab Color Space
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決傳統(tǒng)水稻冠層圖像分割算法性能在很大程度上依賴于訓(xùn)練數(shù)據(jù)集的質(zhì)量,且分割效果易受田間多變光照強(qiáng)度影響,,導(dǎo)致水稻生產(chǎn)參數(shù)估計精度不高等問題,,提出一種基于Lab顏色空間的非監(jiān)督貝葉斯方法,用于田間水稻無人機(jī)圖像分割,。模型參數(shù)從每個獨立,、未標(biāo)記的無人機(jī)圖像直接學(xué)習(xí)獲得,無需訓(xùn)練,。不同圖像會有不同的模型參數(shù),,該算法能夠適應(yīng)各種不同環(huán)境拍攝的圖像。將提出的算法應(yīng)用于分蘗后期田間水稻的無人機(jī)圖像分割,,并與RGB-GMM,、HSV-GMM和All-GMM算法進(jìn)行對比,在高度10m圖像中平均查全率,、平均查準(zhǔn)率和平均F1值分別為0.8427,、0.7570和0.7948,在高度15m圖像中分別為0.8756,、0.7133和0.7788,,優(yōu)于RGB-GMM、HSV-GMM和All-GMM算法。研究表明,,本文提出的方法可以從復(fù)雜大田環(huán)境拍攝的無人機(jī)影像中準(zhǔn)確提取水稻像素,。

    Abstract:

    Rice image segmentation is a key step to obtain rice growth parameters, and plays an important role in rice production. The performance of traditional rice canopy image segmentation algorithm largely depends on the quality of the training data set, and the segmentation result is easily affected by the variable light intensity in the field, which leads to the poor estimation accuracy of rice growth information. In order to solve the above problems, an unsupervised Bayesian method based on Lab color space was proposed for field UAV image segmentation. With the unsupervised learning approach, the model parameters were directly learned by using unlabeled data from each individual UAV image. Different images had different model parameters, and this made the algorithm adaptable to images taken under a wide variety of conditions. The proposed algorithm was applied to UAV image segmentation of rice field in late tillering stage, and compared with RGB-GMM, HSV-GMM and All-GMM algorithms. Applying the algorithm on diverse UAV images in 10m height achieved an average recall, precision and F1 score of 0.8427, 0.7570 and 0.7948, respectively. Applying the algorithm on diverse UAV images in 15m height achieved an average recall, precision and F1 score of 0.8756, 0.7133 and 0.7788, respectively. These numbers outperformed the RGB-GMM, HSV-GMM and All-GMM algorithms. The experimental result demonstrated that the proposed method can accurately identify rice pixels in UAV images taken under diverse conditions.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

曹英麗,林明童,郭忠輝,肖文,馬殿榮,許童羽.基于Lab顏色空間的非監(jiān)督GMM水稻無人機(jī)圖像分割[J].農(nóng)業(yè)機(jī)械學(xué)報,2021,52(1):162-169. CAO Yingli, LIN Mingtong, GUO Zhonghui, XIAO Wen, MA Dianrong, XU Tongyu. Unsupervised GMM for Rice Segmentation with UAV Images Based on Lab Color Space[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(1):162-169.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-07-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-01-10
  • 出版日期:
文章二維碼