ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深層殘差網絡的山區(qū)DEM超分辨率重構
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(41771315,、41501294)、國家重點研發(fā)計劃項目(2017YFC0403203)和西北農林科技大學博士啟動基金項目(Z1090219191)


Super-resolution Reconstruction of DEM in Mountain Area Based on Deep Residual Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對大區(qū)域高分辨率數字高程模型(DEM)數據較難獲取,、超分辨率重構(降尺度)較低分辨率的DEM精度不高,、難以滿足實際需要的問題,提出一種對起伏特征較明顯的山區(qū)DEM超分辨率重構的方法。利用較深層的神經網絡充分學習高低分辨率DEM之間的非線性映射關系,;為了降低訓練難度,,結合殘差學習的方法進行數據訓練。將雙立方插值法,、稀疏混合估計法重構的DEM及提取的坡度結果分別同深層殘差網絡法的結果進行對比,,結果表明,3種方法DEM結果的差值平均值分別為0.41,、0.34,、0.34m,RMSE分別為0.5945,、0.5715、0.4869m,;坡度結果的差值平均值分別為3.02°,、2.04°、1.99°,,RMSE分別為3.6498°,、3.1360°、2.7387°,;處理時間分別為0.052,、663.39、2.16s,。研究表明,,對于10、20,、40m的DEM,,本文方法在空間分布和誤差方面優(yōu)于其他方法,在耗時效率上也優(yōu)于稀疏混合估計法,,適合應用于梯田等地形復雜的區(qū)域進行超分辨率重構,。

    Abstract:

    High-resolution digital elevation model(DEM) in large districts is difficult to be acquired due to the limitation of cost and technology. Usually, it can be obtained by super-resolution reconstruction(downscale) from low-resolution DEM. However, the accuracy of the DEM generated by conventional downscale methods is insufficient. With the development of image downscale, convolutional neural network(CNN) has achieved success. To improve DEM accuracy, a very deep convolutional networks super-resolution method(VDSR)was designed to reconstruct the terrace DEM with obvious undulation characteristics. The deep neural network was used to learn nonlinear mapping between high-resolution DEM and low-resolution DEM, at the same time, residual learning method were used to reduce training difficulty. In order to compare, bicubic interpolation method, sparse mixed estimation method and VDSR method were used to reconstruct the DEM and slope. The slope data were extracted from the DEM results. The mean value of DEM difference of three methods were 0.41m, 0.34m and 0.34m, respectively. The RMSE of DEM were 0.5945m, 0.5715m and 0.4869m, respectively. The mean value of slope difference of three methods were 3.02°, 2.04° and 1.99°, respectively. The RMSE of slope were 3.6498°, 3.1360° and 2.7387°, respectively. The running time were 0.052s, 663.39s and 2.16s, respectively. By comprehensive comparison, for 10m, 20m and 40m DEM, the result showed that VDSR method had great advantage in spatial distribution, error and running time, and it was suitable for super-resolution reconstruction in areas with complex terrain such as terrace.

    參考文獻
    相似文獻
    引證文獻
引用本文

張宏鳴,全凱,楊亞男,楊江濤,陳歡,郭偉玲.基于深層殘差網絡的山區(qū)DEM超分辨率重構[J].農業(yè)機械學報,2021,52(1):178-184. ZHANG Hongming, QUAN Kai, YANG Ya’nan, YANG Jiangtao, CHEN Huan, GUO Weiling. Super-resolution Reconstruction of DEM in Mountain Area Based on Deep Residual Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(1):178-184.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-03-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-01-10
  • 出版日期:
文章二維碼