ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多源遙感數(shù)據(jù)的輸電線走廊樹(shù)種分類(lèi)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金面上項(xiàng)目(41971376)


Tree Species Classification of Power Line Corridor Based on Multi-source Remote Sensing Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)目前樹(shù)冠提取中受背景影響和易出現(xiàn)過(guò)度分割的問(wèn)題,,首先,采用可見(jiàn)光差異植被指數(shù)和雙邊濾波對(duì)傳統(tǒng)的單木樹(shù)冠分割方法進(jìn)行了改進(jìn),;然后,,以單木樹(shù)冠為對(duì)象提取多維特征,并利用XGBoost算法進(jìn)行特征重要性排序和特征選擇,;最后,,使用隨機(jī)森林、支持向量機(jī),、人工神經(jīng)網(wǎng)絡(luò)3種非參數(shù)分類(lèi)器,,設(shè)計(jì)了12種分類(lèi)方案,進(jìn)行了單木樹(shù)種分類(lèi)和精度評(píng)價(jià),。結(jié)果表明,,改進(jìn)的單木分割方法可以有效提高樹(shù)冠提取精度,得到的樹(shù)冠分割精度在80%以上,;將LiDAR數(shù)據(jù)和航空正射影像相結(jié)合,,采用XGBoost算法進(jìn)行特征選擇后,使用ANN分類(lèi)器的分類(lèi)方案精度最高,,總體精度為86.19%,,說(shuō)明多源數(shù)據(jù)協(xié)同作用和特征選擇可以提高樹(shù)種分類(lèi)精度,在單木尺度上ANN分類(lèi)器對(duì)現(xiàn)有樹(shù)種類(lèi)型的分類(lèi)能力最強(qiáng),。

    Abstract:

    The effectiveness of airborne LiDAR point cloud and aerial imagery on tree species classification and the effect of XGBoost algorithm for feature selection on tree species classification accuracy were researched, and the ability three non-parametric classifiers of random forest, support vector machine and artificial neural network to classify tree species on a single-wood scale were evaluated. Aiming at the current background effect of canopy extraction and the problem of over-segmentation, the traditional single tree canopy segmentation method was improved by using the visible light difference vegetation index and bilateral filtering;and then the single tree canopy was used as an object to extract multi-dimensional features by using the XGBoost algorithm to perform feature importance ranking and feature selection. Finally, three non-parameter classifiers of random forest, support vector machine and artificial neural network were used to design 12 classification schemes to classify single tree species and do accuracy evaluation. The results showed that the improved single tree segmentation method can effectively improve the accuracy of tree crown extraction, and the accuracy of the obtained tree canopy segmentation results was more than 80%;the LiDAR data and aerial orthophotos were combined, and the ANN classifier was used for feature selection after XGBoost algorithm for feature selection. The scheme had the highest accuracy, with an overall accuracy of 86.19%, indicating that multi-source data synergy and feature selection can improve the accuracy of tree species classification. The ANN classifier had the strongest ability to classify existing tree species on a single tree scale.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王瑞瑞,李文靜,石偉,蘇婷婷.基于多源遙感數(shù)據(jù)的輸電線走廊樹(shù)種分類(lèi)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(3):226-233. WANG Ruirui, LI Wenjing, SHI Wei, SU Tingting. Tree Species Classification of Power Line Corridor Based on Multi-source Remote Sensing Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(3):226-233.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-05-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-03-10
  • 出版日期:
文章二維碼